|

From Ameen, M. S. (ed.), 1993, Fractogruphy: fracture topography us a 100l in fracture mechanics and stress analysis
Geological Society Special Publication No. 92, pp. 215-233

Factors controlling joint spacing in interbedded
sedimentary rocks: integrating numerical models with
field observations from the Monterey Formation, USA

MICHAEL R. GROSS,! MARK P. FISCHER,> TERRY ENGELDER?
& ROY J. GREENFIELD?

| Department of Geology, Florida International University, Miami, FL 33199,
USA
Department of Geosciences, Pennsylvania State University, University Park,
PA 16802, USA

Abstract: Local tensile stress normal to a joint is reduced in the vicinity of the joint
because such stresses are not transmitted across free surfaces. This stress reduction
prevents the formation of new joints in the vicinity of existing joints, and thus influences
joint spacing. Lateral extent of this stress reduction shadow increases with joint height,
which corresponds to bed thickness for many sedimentary rocks. The linear correlation
between joint spacing and bed thickness commonly observed in cutcrop is a direct resuit
of this relationship. However, other factors in addition to bed thickness influence joint
spacing. We evaluate these factors through both a review of the Hobbs model for joint
spacing and a 2D finite element simulation of a crack confined to a lithology-controlied
mechanical unit. The stress reduction shadow increases in length with increasing
Young’s modulus of the jointing bed, though fracture stress, flaw size, flaw distribution
and extensional strain all interact with bed thickness and elastic properties ultimately to
control joint spacing. One explanation for the observed decrease in joint spacing with
increasing Young's modulus in ouicrops of the Monterey Formation is that beds with
higher Young’s moduli fail at lower magnitudes of extensional strain.

In a 1967 issue of Gevlogical Magazine, D. W. Hobbs published a paper entitled ‘The
formation of tension joints in sedimentary rocks: an explanation’, which is commonly
cited as a theoretical explanation for joint spacing in rock masses composed of layers, each
with a different set of elastic properties. Based on the original derivation of Cox {1952), the
Hobbs model provides one theoretical basis for the well-documented linear relationship
between joint spacing and bed thickness in sedimentary rocks (e.g. Price 1966; McQuillan
1973; Ladeira & Price 1981; Huang & Angelier 1989; Narr & Suppe 1991; Gross 1993a).
By relating joint spacing to the Young’s inodulus of the jointing bed and shear modulus of
the bounding non-jointing beds, Hobbs implies that joint spacing is influenced by the
elastic properties of each bed.

Though both ingenious and remarkably accurate in its prediction of stress distribution,
the Hobbs paper is often misunderstood because it is compact and lacks illustrations, We
present a brief explanation of Hobbs® analysis in an effort to clarify the assumptions and
implications of his model. In addition, we use a 2D finite element numerical simulation of
a crack confined within a bed to describe the stress and displacement fields around the
profile section of a crack in an interbedded sedimentary rock mass. Results of the finite
element modelling are compared with predictions of the Hobbs model. Finally, we discuss
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Fig. 1. Sketch of a lithology-controlled mechanical unit, with systematic joints confined to discrete
beds, and lithologic contacts serving as mechanical layer boundaries. Note that joint height equals {
mechanical layer thickness (MLT), and is proportional to joint spacing (from Gross 1993a).
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Fig. 2. Photograph of steeply dipping limestone beds in the Monterey Formation exposed at Lion’s i
Head along the Santa Maria coastline of California, demonstrating the relationship between joint

spacing and bed thickness. Tall joints, in thicker beds, are more widely spaced than short joints, in
thinner beds. Note the consistent joint height for each individual mechanical layer.
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Fig. 3. Photograph of interbedded siliceous (jointing) and mudstone (non-jointing) layers in the
Monterey Formation exposed at Purisima Point along the Santa Maria coastline. The light coloured
siliceous layers contain statistically regularly-spaced joints that terminate at contacts with adjacent
mudstone layers.

the major factors controlling joint spacing and attempt to reconcile these factors with field
observations that some stiffer beds in the Monterey Formation of California have more
closely spaced joints than beds with lower Young’s moduli.

Stress reduction near joints

Joint spacing models for rocks commenly focus on an analysis of stress reduction in the
vicinity of joints because the criterion for joint propagation is a threshold stress value,
derived either from the tensile strength test (c.g. Jaeger & Cook 1976) or a measure of
fracture toughness (e.g. [rwin 1957) of the rock bed. The mechanism for stress build up in
these models is layer-parallel stretching, which can occur locally in the extensional region
of a fold or regionally upon uphft and erosion.

Stress perturbations occur in the vicinity of an open joint because the joint is a free
surface, and hence acts as a barrier to the transmission of tensile stress. Consequently,
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Fig. 4. Photomicrograph of a thin section from core taken from Point Acrguello Oilfield, offshore
Santa Maria Basin, showing a tensile fracture confined to a quartz chert layer. See text for details.

local crack-normal tensile stress at the joint surface is zero, and increases to the level of
far-field tensile stress at an infinite distance from the joint. New joints form where the local
tensile stress exceeds the fracture stress of the rock. Thus, models for joint spacing
commonly predict the location, and hence spacing, of new joints by evaluating the ratio of
local tensile stress to remote tensile stress as a function of distance from the stress-free
Joint (e.g. Lachenbruch 1961; Pollard & Sepall 1987).

Bed thickness — joint spacing relationship and sequential infilling

Joints in sedimentary rocks generally fall into two categories, those that terminate
randomly within the rock mass and those that terminate at discrete mechanical layer
boundaries. Lithologic contacts, as well as pre-existing fractures, can serve as mechanical
layer boundaries, thereby dividing the rock mass into discrete mechanical units (Gross
19934). The analysis presented in this study focuses on joints confined to individual
lithologic beds, which are frequently observed in thin to medium bedded sedimentary
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Fig. 5. Location map of the southern Santa Maria coastline showing outcrops where fracture data
were collected along with the photographs from Figs 2-4 (adapted from Sylvester & Darrow 1979).
Sites include Lion's Head (LIO), Purisitna Point (PUR) and Lompoc Landing (LOMj). Towns are
Santa Maria (SM) and Lempoc (L). SYRF refers to the Santa Ynez River Fault.

sequences (i.e. beds ranging in thickness from c.1 to 100cm) composed of diverse rock
types. In such lithology-controlled mechanical units joints extend from the bottom of the
bed to its top so that joint height equals bed thickness, which in turn is proportional to
joint spacing, measured as the orthogonal distance between adjacent parallel joints of a
particular set (Fig. 1). These relationships are demonstrated in the photographs in Figs 2~
4, taken from the Monterey Formation along the central California coastline (Fig. 5). In
the interbedded limestone and shale of Fig. 2, joint height in each mechanical layer is
uniform, and tall joints are more widely spaced than short joints. The outcrop shown in
Fig. 3 consists of a series of well-defined jointing and non-jointing lithologies, in which
joints are confined solely to the light coloured siliceous layers and display a regular
spacing. In contrast, the thin recessive shaley layers act as mechanical layer boundaries
and remain unjointed. An example of a joint confined to a thin quartz chert layer is shown
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in Fig. 4. Note the joint terminates abruptly at the contact with adjacent shale layers.
Although slip has occurred in the immediate vicinity of the crack, in general the widest
contact does not serve as a detachment.

Though numerous statistical functions, ranging from negative exponential to normal,
have been proposed to describe the general distribution of joint spacing (c.g. Priest &
Hudson 1976; Rouleau & Gale 1985; Rives et al. 1992), the specific case of lithology-
conirolled joints leads to a typically skewed log normal or gamma distribution for joints
belonging to an individual systematic set (e.g. Huang & Angelier 1989; Narr & Suppe

1991). The regular spacing may be due to the stress reduction shadow created by pre-

existing joints (e.g. Hobbs 1967) and the sequential joint mfilling process, whereby new
joints form in a sequential fashion between adjacent pre-existing joints (Gross 19934a). The
non-normal distribution may result from the random distribution of flaws, which serve as
initiation points for joints. While other studies focus on interactive joint growth (e.g.
Pollard et al. 1982; Olson & Pollard 1989), we are concerned with identifying where new
Joints will form with respect to pre-existing joints along the profile section of a layer.
Therefore, throughout this paper we consider the actual joint propagation process as
instantaneous relative to the time between sequential infilling stages of a systematic joint
set.

Material science studies provide evidence in favour of a sequential infilling mechanism
for joints confined to lithology-controlled mechanical layers. Tension tests performed on
layered ceramics demonstrate that in addition to an increase in crack spacing with layer
thickness, average crack spacing decreases systematically with increasing applied stress
(Garrett & Bailey 1977; Parvizi & Bailey 1978). The applied stress in turn scales linearly
with extensional strain for the elastic laminates. The decrease in crack spacing with
increasing load occurs by a process of sequential infilling. Geological evidence supporting
sequential infilting includes fractured piedmontite grains (Masuda & Kuriyama 1988} and
curving cross joints (Engelder & Gross 1993).

The Hobbs model for joint spacing

The 1D Hobbs model consists of three discrete beds and predicts variations in the crack-
normal tensile stress as a function of differences in elastic properties between a middle
jointing bed and two non-jointing bounding beds. The beds behave elastically and are
bonded together to prevent slip along the interfaces. Unlike the non-layered models of
Lachenbruch (1961) and Pollard & Segall (1987), stress perturbations in a bedded medium
are influenced by both elastic properties and shear stresses that develop along bed
interfaces. According to our interpretation, the Hobbs model consists of a middle ‘jointing
bed’ (Bed A) sandwiched between ‘non-jointing beds’ (Beds B). Hobbs assumes both
bounding beds have the same elastic moduli, and that the thickness of bounding beds is
much greater than the thickness (d) of the Jointed bed. After initial extension all of the
beds remain unjointed, however, as extensional strain increases, the tensile stress in the
middle bed eventually exceeds the tensile strength of that bed, and a joint propagates. At
this point Hobbs assumes that tensile stress cannot be transmitted across the joint surface.
Shear stresses are produced within the bounding beds as a direct result of differences in
clastic displacement within the jointed bed and bounding beds.

The key parameter controlling joint spacing is the distribution of longitudinal tensile
stress (o) within Bed A after jointing, which increases from zero at the joint surface to
a value equivalent to the remote stress at an infinite distance away from the joint,
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Substituting Hobbs’ equation 13 into equation 6 and rearranging the terms produces an
equation that evaluates normalized crack-normal tensile stress after joint propagation (i.e.
local stress divided by remote tensile stress) as a function of distance from the joint;

1 L

P T local . 2.’5 GB z 2.’1: GB 2
=—=1 = —=—1] —cosh—{— 1
EAdEl T remote + sinh d (EA) cos d EA ' ( )
where P is the applied load, ¢, is the strain at which the first joint forms, d is the jointing
bed thickness (i.e. joint height), and E, and Gp are the Young’s modulus and shear

modulus of the jointing and non-jointing beds, respectively. We prefer to rewrite equation
(1) in the form:

P
e = /), @

where,

-4(2)"

and f(x/6) gives the dependence of the local stress on x. The function f(x/8} is 0 for x=0
and increases to 1 for large x. The quantity § has units of length and can be thought of as a
decay length, or the distance over which the stress shadow decays back to a fixed fraction
of the remote stress. The distance § is proportional to d and to the square roof of {£4/Gn).
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Fig. 6. Predicted plots of stress reduction shadows based on the Hobbs model for various Ea/Ga
ratios.
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Fig. 7. Finite element mesh and boundary conditions. Models were subjected to uniform longitudinal
extension, e. Inset shows an enlarged portion of mesh around joint in Bed A. Bed B is shale in all
models whereas the material properties of Bed A are varied. Joint shown slightly open for
illustration. Cartesian coordinate system with (0, 0) at the centre of the joint is used for all related
graphs and figures (after Fischer 1994).

A plot of normalized stress v. normalized distance from a joint for a series of Ea/Gp
ratios is presented in Fig. 6. Because Hobbs’ analysis predicts that for a fixed shear
modulus of the bounding beds (i.e. holding Gy constant), § will increase as the square root
of Ea, a high E, will produce a long stress reduction shadow, whereas a low E, creates a
short perturbed zone.

Table 1. Boundary conditions and elastic properties assigned to finite element models

Model # e, Eg (GPa) E, (GPa) vn Va Gp (GPa) G4 (GPa)
1 5% 1074 16 56 0.14 0.26 7 22
2 5x 107 16 17.5 0.14 0.25 7 7
3 5% 10~ i6 35 0.14 0.25 7 14
4 5x 107 16 70 0.14 0.25 7 28

Finite element modelling

We conducted a series of 2D finite element models to determine the distribution of stresses
and displacements in a jointed, interbedded rock body, and to investigate the effects of
contrasting elastic moduli on stress perturbations near joints. Finite element numerical
simulation was accomplished using the interactive fracture analysis program FRANC
(Wawrzynek & Ingraffea 1987). FRANC simulates the r % singularity in the elastic crack-
tip stress field by surrounding each crack tip with a rosette of eight quadratic, triangular,
isoparametric quarter-point elements (Barsoum 1976); the remainder of the model mesh is
composed of quadratic, isoparametric elements. The boundary conditions and geometry
of the model are shown in Fig. 7. Model material properties (Table 1) are median values
compiled from several published sources (Blair 1955, 1956; Clark 1966; Senseny & Pfeifle
1984; Atkinson & Meridith 1987). .

In the first model, the 2D distribution of crack-normal tensile stress (0xx) was analysed
in detail for a model consisting of a dolostone bed (Bed A; E=56GPa; G = 22GPa;
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Fig. 8. Contour diagram showing the 2D distribution of crack-normal tensile stress (o) in MPa for
a portion of the dolostone and shale model to the right of the joint. Model subjected to a strain of
5 x 107 (after Fischer 1994).

v = 0.26) bounded by shale beds (Bed B; E = 16 GPa; G = 7GPa; v = 0.14). A uniform
longitudinal extensional strain of 5 x 10* was applied, resulting in theoretical pre-
cracking stresses of 28 MPa in the dolostone and 8§ MPa in the shale beds. Because of edge
effects in the finite element model, however, o, varied longitudinally within each bed prior
to cracking. This variation was minor (< 2.0% mean error in each bed), and in the model
the mean &,y is 28.5 MPa in dolostone and 7.8 MPa in shale.

Local crack-normal tensile stress

Local crack-normal tensile stress (o) in the dolostone is reduced near the joint whereas in
the shale there is an increase in o, near the joint (Fig. 8). At the joint wall o, is zero and
near each end of the joint the stress is elevated due to the stress concentrating effect of the
sharp crack tip (Lawn & Wilshaw 1975; Broek 1978). Because the joint is elliptical, the
greatest amount of elastic strain (and hence stress) is relieved by crack opening along the
middle of Bed A. Consequently, the stress reduction is greatest and extends farthest along
the centre of Bed A. This combination of elliptical crack shape, high stress near the joint
tip and zero stress along the length of the joint is responsible for the concave-inwards
shape of the stress reduction shadow in the dolostone bed. Because there is no crack
opening in the shale beds, large clastic strains developed in shale adjacent to the joint tips
result in a localized increase in stress. An integral part of linear elastic fracture mechanics
(Irwin 1957; Paris & Sih 1965; Broek 1978), this stress concentration is maximurm at the
joint tips and decreases rapidly away from the joint. At horizontal distances > 0.3 m from
the joint the stress in the shale beds is the same as the pre-cracking stress.
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Fig. 9 (a) Graph of normalized o,, v. normalized horizontal distance from the joint for various
ExfGp values calcufated using FRANC. Gy for all models is 7GPa. Stress values were recorded
along centre of Bed A. (b) Contours of normalized o, in a middle bed of v = 0.25 and variable Eq.
Bounding beds are shale in all three models and E4 /Gy ratios are 2.5, 5 and 10 in (a), (b} and (c),
respectively. Contours are in percentages of the pre-cracking stress in each layer (i.e. a value of 0.5
indicates the stress at that position is 50% of the pre-cracking stress value) (after Fischer 1994}

Elastic moduli effects

In order to investigate the effects of varying elastic moduli (i.e. Eo/Gp ratios) on joint
spacing we conducted a scries of models in which a bed with » = 0.25 and variable E, is
sandwiched between shale beds and subjected to a uniform longitudinal extensional strain
of 5x 107, The ratio of EA/Gg controls the [ateral extent of the stress reduction shadow
around a joint, as shown graphically in Fig. 9a. To illustrate this effect better, Fig. 9b
shows contours of normalized stress in the middle bed for three geologically reasonable
values of E,/Gp. For values of normalized o, < 0.75, the stress reduction shadows for
various E4/Gp ratios are nearly identical. However, for values of normalized stress > 0.75
the size of the stress reduction shadow increases significantly with increasing Ea.

Comparison with Hobbs’ analysis

In general there is good agreement between Hobbs’ analysis and our finite element model
results. Although Hobbs’ prediction of the dependence of stress reduction shadow size on
contrasts in elastic moduli is in qualitative agreement with the finite element model results
(i.e. the stress shadow increases in extent with increasing Young’s modulus), the
dependence of the stress shadow decay length, d, on E, exhibited by FRANC is weaker
than the square root dependence predicted by the Hobbs model. To show this we consider
the x position of the finite element contours of normalized o, at the centre of Bed A,
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denoted by x™ (Fig. 9b). These positions are compared to those predicted by the Hobbs

model, denoted by x®. The x® values for each contour are computed as:

® _ ., m [ Ea
Z (k) = %(175) 175" (4)

and are given in Table 2. This definition of x® gives Hobbs’ prediction of the x position of
each contour for the case in which E, is 35 and 70 GPa (i.c. x(gé), x(%) based on the
position of the corresponding contour for the finite element model in which E, is 17.5 GPa
(i.e. xg;).s)). The x® values calculated for the models in which En is 35 and 70 GPa are in
all cases greater than the corresponding x‘™ values, showing that dependence of the stress
reduction shadow size on E, is weaker for the finite element model than the square root
dependence predicted by Hobbs.

Model geometry and method of stress determination may contribute in part to the
differences in stress reduction shadow size predicted by the Hobbs and finite element
models. In the finite element model the joint terminates at the shale boundaries and is
entirely confined to the middle layer, thus reflecting geometry commonly observed in
interbedded rocks with sharp lithologic contacts (Figs 3 & 4). In contrast, the joint in the
Hobbs model extends significant distances into the neighbouring beds due to requirements
imposed by shear stress assumptions. Furthermore, as opposed to Hobbs’ derivation, the
numerical model utilizes linear elastic fracture mechanics to describe the stress and
displacement fields in the vicinity of the crack.

Table 2. Comparison of finite element stress reduction contours to the (ExJGg)™ dependence predicted
by the Hobbs model

Contour level

: ’ 0.25 0.50 0.75 0.90
Ep (GPa) (0} e <@ x® X e X @
17.5 0.403 0.403 0.655 0.655 1.042 1.042 1.613  1.613
35 0.420 0.570 0.682 0.527 1.075 1.473 1.848  2.281
70 0.470 0.806 0.706 i.310 1.176 2.083 2318 3.226

In all models Gy is 7GPa and distances are normalized to a bed thickness of 1. x%™ refers to the
contour position in the numerical model and x is the position predicted by Hobbs.

Joint spacing predicted from numerical models

Foint spacing models combine a rock fracture criterion with an analysis of the stress
distribution around a pre-existing joint to predict the location where subsequent joints will
form (e.g. Hobbs 1967; Poliard & Segall 1987; Narr & Suppe 1991; Gross 1993a). Hobbs
employs a tensile strength fracture criterion wherein joints form when the remote tensile
stress (Cremote) iD @ bed exceeds the tensile strength. We use a fracture criterion based on
the principles of linear clastic fracture mechanics (Lawn & Wilshaw 1975).
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Fig. 10. Flaw size dependent fracture criterion. Fracture stress for dolostone, sandstone and shale
illustrated for various flaw sizes. Fracture toughness values for sandstone (K. = 1.2MPam™), shale
(K = 0.9MPam™) and dolostone (K1 = 1.7MPam™) are the mean of K, values compiled in the
literature (Senseny & Pfeifle 1984; Atkinson & Meredith 1987).

Fracture criterion

Inglis (1913} and Griffith (1920) showed that brittle fracture is often induced by a tensile
stress concentration at flaws (e.g. microcracks) in a2 material. Lincar elastic fracture
mechanics describes the stress concentration at the tip of a Mode I opening (i.e. tensile)
crack by means of the stress intensity factor (Broek 1978):

K = Yo emote \/'H'_C, (5)

where oyemoe is the remote crack-normal tensile stress, ¢ is half the crack length, and Yisa
geometric constant, commonly taken as 1.0 for an infinite flat blade crack (Lawn &
Wilshaw 1975). The fracture criterion states that a crack will propagate when stress
intensity at the crack tip exceeds some critical value known as the fracture toughness (K;.)
of the material (Irwin 1957). Substituting K;. for K; in equation (5), setting ¥ = 1, and
solving for the fracture stress (gy), the crack-normal tensile stress required to cause a flaw
to propagate, it is found that:

KIc
. 6
= (6)
Using published values of Ki. for a variety of rock types, oy can be calculated for a given

flaw size (Fig. 10). However, because the distribution of flaw sizes in rocks is complex, it is
unlikely that the fracture strength of a rock can be defined by a single value of o.

0’f=

Flaw size distribution in two dimensions

The remote tensile stress required to drive a crack decreases with initial flaw size {Fig. 10).
As a consequence, for a constant applied extensional strain, the minimum allowable
distance between two adjacent joints decreases with increasing flaw size. The dependence
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Fig. 11. Stress reduction shadow in the dolostone bed of the dolostone and shale model. Tensile
stress contours are in MPa, and applied remote stress is 28.5 MPa. The closest distance at which a
new joint will form is dependent on the size of the Baw from which it initiates. Flaws ranging in size
from 0.3 to 0.5cm will activate in the shaded region, with 0.5cm flaws initiating closer to the joint.
Joint spacing therefore decreases with increasing initial flaw size.

of joint spacing on flaw size is shown schematically in Fig. 11, which displays stress
contours around a joint in the model dolostone bed (extensional strain of 5x 1074 applied
remote stress of 28.5MPa). As flaw size increases, the corresponding fracture stress at
which point the flaw grows into a joint is attained at distances closer to an existing joint,
resulting in a decrease in joint spacing. Joint propagation occurs in the shaded region of
Fig. 11 for flaws ranging in size from 0.3 to 0.5cm. In the case of Jjoints initiating in the
middle of the bed (i.e. y = 0) the minimum allowable joint spacing ranges from (0.82)d for
0.5cm flaws to (1.25)d for 0.3 cm flaws, where d is the bed thickness.

In addition to flaw size distribution along the x-axis, another factor that determines
Joint spacing is the position relative to the bed boundary (i.e. along the y-axis) from where
the joint initiates. Contour shapes in Fig. 11 predict that for a given flaw size, joints
initiating near bed boundaries will be more closely spaced than joints propagating from
the central region of beds. The curvature of stress contours is less pronounced for large
distances from the joint, so that for the 90% contour level the dependence of joint spacing
on y-axis-initiation position is somewhat reduced. Furthermore, a Weibull approach to the
strength of materials (¢.g. Weibull 1951; Davidge 1979) implies that joint initiation is more
likely to occur near the centre of the bed rather than along its edges. This is due to the
greater activation area in the central portion of the bed as indicated by the widih of the
shaded zone in Fig. 11.

Joint spacing determination

Several approaches have been proposed for analysing joint spacing in 1D models,
including the maximum tensile stress criterion that predicts precise midpoint fracturing
regardless of initial joint spacing (Hobbs 1967), the introduction of random flaws into
stress reduction models (Narr & Suppe 1991; Rives et al. 1992), and the minimum
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Fig. 12. (a) Stress shadows representing 90% of the remote tensile stress for beds with Young's
modulus of 17.5GPa (Bed #1) and 70 GPa (Bed #2). (b) Expected joint spacing distributions for
Beds #1 and #2 after an equal number of infilling events. Note the larger stress reduction shadow
leads to a larger median joint spacing.

allowable spacing criterion (Gross 19934). Regardless of the approach, two boundary
conditions always apply to models of joint spacing in lighology-controlled mechanical
layers. First, a new joint will form between two pre-existing joints when the fracture stress
is attained. Second, the stress reduction shadow inhibits the formation of new Jjoints in the
vicinity of pre-existing joints.

Our pumerical results from 2D models indicate that the extent of the stress reduction
shadow increases with increasing Young’s modulus. The effect of elastic properties on
Joint spacing is illustrated in an example of two jointing layers, #1 and #2, with Young’s
moduli of 17.5 and 70 GPa, respectively (Fig. 12a). Consider the case whereby each bed
has undergone an initial fracturing episode. A subsequent infilling event will result in the
joint spacing distributions depicted in Fig. 12b. Random flaw distributions along with the
2D shape of the activation zone will lead to a wide range of joint spacing values and a
characteristic skewed distribution. For example, joints will initiate preferentially from the
largest  flaws, and joints initiating near bed boundaries will be more closely spaced than
joints propagating from the central portion of the bed. Nevertheless, one would initially
predict that for a population of mechanically confined fractures, the bed with the higher
Young’s modulus will exhibit a larger median joint spacing because of the larger stress
reduction shadow,
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Table 3. Fracture spacing measurements at Lompoc Landing along with physical properties of siliceous
mechanical units in the Monterey Formation

Chert Diatomite

Number of beds 6 7
Number of joint spacings 247 315
Matrix porosity 0.5% 37%
Young's modulus 70 GPa 5 GPa
Shear modulus 33 GPa 2 GPa
Fracture spacing index (FSI) 241 L.0%
Fracture spacing ratio (FSR) 2.29 1.11

Porosity and elastic moduli measurements are preliminary and were determined from similar units
exposed along the Santa Maria coastline. Elastic properties were measured dynamically using the
resonance technique. From Gross 19935.

Why stiffer beds have smaller joint spacings; a field example from the
Monterey Formation, California

The concept that differences in elastic properties among jointing lithologies wiil result in
different joint spacings for a given bed thickness is intuitive. Our analysis thus far suggests
the stress shadow increases in lateral extent with increasing Young's modulus, implying
that joint spacing should be greater in beds with higher Young’s moduli (i.e. stiffer beds)
(Fig. 9b). However, joint spacing is often closer in stiffer beds. For example, the siliceous
Monterey Formation exposed at Lompoc Landing along the Santa Maria coastline of
California (Fig. 5) consists of a series of interbedded cherts and dolomitic diatomites, both
jointing lithologies, along with non-jointing clay-rich mudstones. Typical physical
properties of the two siliceous rock types, exposed along the Santa Maria coastline, are
markedly different from each other, with a Young’s modulus of 70 GPa for the quartz
chert and 5GPa for the impure diatomite (Table 3). Several beds at Lompoc Landing are
welded together along their boundaries, and consequently were subjected to equal
amounts of extensional strain. The vertical systematic joint set investigated trends NNE-
SSW and post-dates silica diagenesis, and therefore developed after differences in physical
properties were established among the mechanical units.

Joint spacing data for the diatomite and chert beds at Lompoc Landing are presented as
plots of median joint spacing v. mechanical layer thickness (Fig. 13). The slope of the best-
fit line, calculated with median joint spacing as the dependent variable, is defined as the
fracture spacing index (FSI) of Narr & Suppe (1991). The fracture spacing ratio (FSR)
equals the mechanical layer thickness divided by the median joint spacing, and represents
the mean for all beds of a given lithology. Chert beds at Lompoc Landing display
significantly higher FSI and FSR, and thus more closely spaced joints relative to bed
thickness, than adjacent diatomites. This spacing relationship exists despite the much
larger chert Young’s modulus. How does such a joint spacing distribution develop in light
of the numerical models and theoretical considerations discussed in this paper? One
explanation is that despite the larger stress reduction shadow, a stiffer bed will contain
more joints relative to other beds because jointing in the stiffer bed cccurs at lower strain
levels.

Consider a rock mass composed of a sequence of dolostone and sandstone beds
interbedded with non-jointing mudstone beds. The dolostone has a Young’s modulus of
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Fig. 13, Median joint spacing v. mechanical layer thickness for diatomite and chert beds of the
Monterey Formation exposed at Lompoc Landing. Numbers next to data points refer to total
number of joint spacing measurements taken in that particular bed.

56GPa and a K. of 1.7MPam”, whereas the sandstone has a Young's modulus of
12GPa and a Ky, of 1.2 MPam*. Hooke’s Law states that for a given value of strain,
stress will be higher in the bed with the higher Young’s modulus (Fig. 14). Because our
fracture critcrion is a threshold stress value (i.e. the fracture stress, ar), jointing will occur
in a given bed at the point where the stress—strain curve intersects oy for that bed.
Assuming a range in flaw size from 0.3 to 0.5cm (i.e. crack half-lengths of 0.15-0.25 cm)
for both jointing lithologies, the fracture stress is 19.2-24.8 MPa for the dolostone and
13.5--17.5 MPa for the sandstone (Fig. 14).

Fracture stress ranges derived from the range in flaw size correspond in turn to a range
of strain values for the first jointing event in each lithology. The intersections of stress—
strain curves with horizontal fracture stress lines in Fig. 14 indicate that joints will prop-
agate in the dolostone bed for strain values within the range of 3.43 x 107 to 4.42 x 107™%.
Likewise, joints will initiate in the sandstone unit between strains of 1.12 x 10~* and
1.46 x 107>, In the case whereby all beds in the rock mass are welded together, and thus
remote longitudinal strain remains uniform throughout, the first series of joints will
propagate in the dolostone bed once a strain of c. 4 x 107* is reached. At this juncture the
sandstone bed is unjointed because stress within the sandstone is less than the minimum
fracture stress of 13.5MPa. As longitudinal extension continues, the sandstone bed
remains unjointed until strain values of 1.12 x 107°-1.46 x10™ are exceeded, at which
point the first set of joints propagates in the sandstone.

As a result of the relationship between Hooke’s Law and the fracture stress criterion,
jointing occurs in the dolostone at lower strains, and hence earlier, than jointing in the
sandstone. In fact, the situation may arise where a stiff bed undergoes two or more jointing
events prior to initial jointing in a low modulus bed. Therefore, in spite of the larger stress
reduction shadows predicted by both Hobbs and finite element modelling, beds with
relatively high Young’s moduli can actually contain relatively closely-spaced joints by
virtue of the small strain increments required for infilling jointing events.




FACTORS CONTROLLING JOINT SPACING 231

40

Edol_56 GPa
ES'=12 GPa

)
[ ]

d
¥ Of

STRESS (MPa)
]
[=)

oy
o

0 I I l T | I 1 L] 1 T
0 25107 5010°% 7510% 1010° 125102 15102
STRAIN
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In comparing two jointing beds with different elastic moduli (for Beds 1 and 2, E; > E,),
the factor that determines which bed will fracture at lower strains is the ratio of Young’s
modulus to the ratio of fracture stress. Assuming the same range of flaw sizes for both
beds, the stiffer bed will fracture at lower strains when:

B _ Ky

5 > Kg) .

(7)

The inequality in equation (7) holds true for a majority of sedimentary rocks, which may
explain the higher joint densities often observed in stiffer beds despite the larger stress
reduction shadows.

Conclusions

Joint spacing models focus on the distribution of tensile stress about a joint in an effort to
predict the location of subsequent joints. Stress distributions derived from finite element
simulations compare favourably with Hobbs’ theoretical predictions. Both the Hobbs
model and finite element modelling predict longer stress reduction shadows, and hence
wider joint spacings, for beds with higher Young’s moduli. Finite element simulations,
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though, show the dependence of the stress reduction shadow on Young’s modulus in the
jointing bed is weaker than the square root dependence predicted by Hobbs.

Though bed thickness is a primary factor, elastic moduli, extensional strain and Aaw size
are all important parameters determining joint spacing in interbedded sedimentary rocks.
A high Young’s modulus contributes to an increase in stress reduction shadow length, yet
tends to lower the strain level required for joint propagation due to its relationship with
the fracture stress criterion. Small flaws situated in the middle of the jointing bed produce
widely spaced joints, whereas those same flaws located near bed interfaces result in more
closely spaced joints. Despite the complex interaction among these factors, creating a wide
range of joint spacings for an individual mechanical bed, the linear correlation between
median joint spacing and bed thickness for a given lithology, and hence given mechanical
properties, is remarkably strong.

Funding for this project was provided by a grant from Texaco (TE, MRG) a Shell Doctoral
Fellowship (MPF) and GRI Contract 5088-260-1746 (TE). We thank T. Ingrafiea for providing the
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for helpful field information. We appreciate the thoughtful reviews provided by Wayne Narr, Atilla
Aydin, Byron Kulander, Ernie Rutter and Mohammed Ameen.
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