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Plane strain fracture toughness (Klc) values are determined for the modified 
ring (MR) test through numerical simulation of crack growth to highlight the 
sensitivity of MR Ktc values on applied displacement or force boundary 
conditions, slip conditions at the specimen-platen interface, and the Poisson 
ratio (v) of the test material. Numerical calculation of fracture toughness in 
the MR test is traditionally conducted assuming a uniform force along the 
specimen loading surfaces and no slip between the specimen and the loading 
platens. Under these conditions K+c increases by 30-40% as v decreases from 
0.4 to O. 1. When slip is allowed at the specimen-platen interface under a 
uniform force, Kic values are independent of v, and for any given v, are 5-25% 
less than those determined under a no-slip boundary condition. Under a 
uniform displacement of the specimen loading surfaces, K+, is essentially 
independent of v, regardless of specimen-platen interaction. Moreover, 
although K+c values determined under uniform displacement and no-slip 
boundary conditions are always higher than those determined under uniform 
displacement and slip-allowed boundary conditions, the average difference in 
Klc for these two methods is less than 5% for the two specimen geometries 
examined. This suggests that under uniform displacement conditions, Ku is 
essentially independent of specimen-platen interaction. Because KIc values 
determined from MR testing are strongly dependent on the modeling pro- 
cedure, future reports of KI~ determined from this test should be accompanied 
by detailed reports of the modeling procedure. Until further testing reveals the 
most accurate simulation technique, we advocate use of a uniform displacement 
formulation for K~ determination from MR testing because results from this 
method are insensitive to most modeling parameters. Numerical results from 
models conducted under uniform force, no -slip boundary conditions should be 
viewed as an upper bound to KI~. 

INTRODUCTION 

The modified ring (MR) test for plane strain fracture 
toughness determination involves two phases: labora- 
tory deformation of a specimen, and numerical calcu- 
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lation of crack-tip stress intensity factors in a model with 
exactly the same dimensions as the laboratory specimen 
[1]. Published results using the modified ring test have 
utilized displacement discontinuity [1] and finite element 
[2-4] techniques for the second phase of the test, but do 
not provide detailed descriptions of the modeling pro- 
cedure. This paper is concerned with the parameters that 
affect the numerical modeling results for MR tests on 
unconfined specimens, specifically when the modeling is 
accomplished using the finite element method. 

In the first phase of the MR test, two diametrically 
opposed, flat loading surfaces are machined along the 
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Fig. I. Geometry of modified ring test specimens: (a) initial modified 
ring specimen; (b) crack geometry in a modified ring specimen. 

edges of a cylindrical specimen, and a hole is drilled 
in the center of the cylinder [Fig. l(a)]. Compression 
applied to the loading surfaces results in a distribution 
of stress (axx) along the specimen axis like that shown in 
Fig. 2. Further compression initiates cracks at the top 
and bottom of the center hole that propagate parallel to 
the loading axis [Fig. l(b)]. A typical loading curve 
recorded during loading and cracking of a MR specimen 
is shown schematically in Figs 3(a) and (b). 

During a test a specimen is compressed at a constant 
displacement rate. The resulting axial compressive stress 
increases until time to, when cracks initiate from the top 
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Fig. 2. Numerical solution for the distribution of G,~ along the y-axis 

of a modified ring specimen under vertical compression. 
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Fig. 3. Mechanics of the modified ring test: (a) typical time-varying 
record of applied stress during a modified ring test; (b) variation in 
stress during crack growth in a modified ring specimen; (c) variation 

in K t with time during cracking of a modified ring specimen. 

and bottom of the central hole of the specimen. These 
cracks propagate unstably, requiring a decrease in stress 
from a~ to a,c to control crack growth until time t¢ 
[Fig. 3(b)]. After time re, interaction between the cracks 
and the crack-normal compressive stress field near the 
loading surfaces (Fig. 2) causes the mode I crack-tip 
stress intensity factors (K~) to decrease with increasing 
crack length [Fig. 3(c)]. Thereafter, a continuously 
increasing stress is required to drive the cracks [Figs 3(a) 
and (b)]. The maximum in the Kl vs time curve (Kim~) 
defines the fracture toughness (Kit) of the specimen 
because it is this value of KI that marks the transition 
from unstable to stable crack propagation [Fig. 3(¢)]. 
Unlike many other fracture toughness tests [5-7], there 
is no need to determine crack length in an unconfined 
MR test because the critical crack length (ac) corre- 
sponding to Kxm.x coincides with the local minimum in 
the load vs time curve shown in Fig. 3(a) (i.e. trio). 

A detailed explanation of the numerical modeling 
procedure used in calculating Kxo from a MR test is 
required if the numerical results are significantly affected 
by any aspects of the modeling technique. Our analyses 
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indicate the numerical results from a MR test may be 
affected by a variety of factors, including the elastic 
properties of the specimen, the method of crack-tip stress 
intensity factor calculation, the fixity of the specimen at 
the loading platen, and whether the simulation was 
solved using an applied force or an applied displacement 
formulation. In this paper we evaluate the impact of the 
aforementioned parameters on K~c determined from 
numerical modeling of a MR test using both the tra- 
ditional applied force [1] and an applied displacement 
formulation. Using a displacement formulation, a new 
method for calculating K~c is developed that appropri- 
ately represents the behavior anticipated when applying 
load through rigid platens. 

NUMERICAL MODELING PROCEDURE 

Numerical modeling in this study was accomplished 
using the interactive finite element program FRANC 
(FRacture ANalysis Code) developed at Cornell 
University [8]. Because of built-in crack growth and 
remeshing capabilities, FRANC is particularly well- 
suited for numerical modeling of MR tests, where 
knowledge of the variation in K~ with increasing crack 
length is required. Finite element modeling of such 
incremental crack growth traditionally presents a 
significant problem because each time a crack extends, 
an entirely new problem must be formulated to account 
for the continually changing geometry of the cracked 
body. FRANC overcomes this difficulty by allowing 
the user to insert new cracks into previously uncracked 
model meshes, or to move existing crack tips to 
any specified position in a model. Once a crack is 
inserted or moved, the mesh around the new crack 
segment is automatically regenerated to account for 
the change in model geometry. User-defined adjustments 
to the mesh are possible during this incremental 
regeneration process, but such alterations are rarely 
required. 

FRANC simulates the familiar r -  1/2 singularity in the 
elastic crack-tip stress field, where r is the radial distance 
away from the crack tip [e.g. 9, 10], by surrounding the 
tips of each crack with a rosette of eight quadratic, 
triangular, isoparametric, quarter-point elements 
[11, 12]. The remaining portions of any model mesh are 
composed of eight-noded quadrilateral or six-noded 
triangular, quadratic, isoparametric elements. As noted 
by Barsoum [11] and Whittaker et al. [13], simulating the 
crack-tip singularity with quarter-point elements is 
preferable to using elements with embedded singularities 
[e.g. 14-16] because quarter-point elements satisfy all 
essential convergence criteria (e.g. inter-element compat- 
ibility and continuity of displacement; [17]), whereas 
elements with embedded singularities may not consist- 
ently satisfy these criteria. The accuracy of FRANC has 
been proven in numerous applications [e.g. 18-20]. 

We constructed finite element models of two specimen 
geometries that we hereafter refer to as MRS and MRF. 
The two geometries were constructed for fracture tough- 
ness tests on laboratory-grown synthetic ice (MRS) and 

firn (MRF), a porous natural ice formed by compaction 
of snow. The respective dimensions of the MRS and 
MRF specimens are: re=38.25mm, r~=5mm, 
L = 15 mm, and re = 65 mm, r i = 11.11 mm, L = 20 mm 
(Fig. 1). Using the automatic crack growth and remesh- 
ing algorithms within FRANC, mode I stress intensity 
factor (K~) vs crack length (a) curves for each of these 
specimens were generated in the following manner. Two 
cracks of equal length are first introduced to the un- 
cracked model mesh. These cracks initiate from the top 
and bottom of the central hole of the specimen and 
extend equal distances away from the hole along the 
y-axis (initial crack length for MRS: ai = 10mm; for 
MRF: ai = 20 mm). We then make both cracks grow in 
2 mm (MRS specimen) or 3 mm increments (MRF spec- 
imen), calculating the model stresses, displacements and 
stress intensity factors after each increment of crack 
growth, until a complete KI vs a curve similar to that in 
Fig. 3(c) is generated. 

The two meshes and boundary conditions we 
employed for the applied force and applied displacement 
formulations are shown in Fig. 4. We discretized the 
entire specimen in order to examine the effects of local 
asymmetries in the mesh that arise during the automatic 
crack growth and remeshing stage of the modeling 
procedure, resulting in slightly different mode I stress 
intensity factors at the upper and lower crack tips. For 
the applied force formulation the specimen is fixed in the 
y-direction at the lateral edges of the hole, and equal and 
opposite uniform forces (i.e. stress per unit length and 
thickness) are applied to the specimen loading surfaces 
[Fig. 4(a)]. In the applied displacement formulation the 
specimen is fixed in the y-direction along the lower 
loading surface and a uniform vertical displacement is 
applied to the upper loading surface [Fig. 4(b)]. 

We examine two end-member cases of specimen- 
platen interaction in both the applied force and displace- 
ment formulations. For the case when there is no slip at 
the specimen-platen interface in either the applied force 
or displacement formulation, the entire length of both 
loading surfaces is fixed in the x-direction. When simu- 
lating slip along the loading platen in an applied force 
formulation, only the midpoints of the specimen loading 
surfaces are fixed in the x-direction [Fig. 4(a)], corre- 
sponding to zero friction. When simulating slip under an 
applied displacement formulation the midpoint of the 
lower loading surface is fixed in x and y [Fig. 4(b)]. We 
respectively refer to these two sets of specimen-platen 
fixities as "slip" and "no-slip" boundary conditions. 

Calculation o f  crack-tip stress intensity factors  

Calculation of crack-tip stress intensity factors is the 
most important aspect of numerical modeling of crack 
propagation because the crack-tip stress intensity factors 
determine the stability of a crack, and the direction of 
unstable crack growth. FRANC offers three different 
algorithms for calculation of mode I crack-tip stress 
intensity factors: modified crack closure integral (MCC; 
[21]), displacement correlation (DC; [12]) and J-integral 
(J; [22]). Bittencourt et al. [20] reviewed the accuracy of 
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Fig. 4. Finite element meshes and boundary conditions designed for this study: (a) MRS specimen mesh depicting the applied 
force boundary conditions, (b) MRF specimen mesh depicting the applied displacment boundary conditions. Note that the 
fixity of the specimen loading surfaces varies depending on whether we allow slip at the specimen-platen interface. The 

boundary conditions shown are those for the slipping case. Plane strain behavior is assumed in all models. 

each of these techniques as implemented in FRANC by 
comparing the finite element solutions with existing 
analytical solutions for simple mixed-mode crack prob- 
lems. They found that the accuracy of the numerical 
solution varied both with the method of stress intensity 
factor calculation and the fineness of the mesh, especially 
in the vicinity of the crack tips. 

We calculated K~ at both crack tips using each of the 
aforementioned algorithms, and compared these sol- 
utions at different degrees of mesh refinement to examine 
the affects on K~. Table 1 records the average K~ at the 
tip of each crack propagating through 10 equal incre- 
ments of growth away from the hole of an MRS 
specimen under applied force and slip-allowed boundary 
conditions. Table 2 records analogous information for 
an MRS specimen under applied displacement and 
slip-allowed boundary conditions. The average K~ at 
each crack tip is reported because at all stages of crack 
growth in both models, the difference in K~ between 
the upper and lower crack tips was less than 3%. Part 
(a) of each table records the Kt values calculated from 
the original mesh generated by FRANC during the 
automatic remeshing stage of crack growth. Parts (b)-(d) 
of each table record the Kx values calculated after 
each of three successive cycles of mesh refinement, where 
in one cycle of refinement the radius of the rosette 
of singular, triangular, isoparametric, quarter-point 
elements surrounding the crack tip is reduced by half 
(Fig. 5). 

Tables 1 and 2 reveal that K~ determined from each of 
the three methods may vary by as much as ,-, 6% when 
calculated from the original, unrefined mesh. However, 
as shown by Bittencourt e t  al. [20], this difference is 
negligible after two or three cycles of mesh refinement. 
Consequently, all Kt values presented in this paper are 
calculated after three cycles of refinement. Moreover, 
because Bittencourt e t  al.  [20] found that the MCC 
technique yielded the most accurate stress intensity 
factor calculation, providing solutions for mode I and II 
stress intensity factors within 3% of the analytical 
solution for the problems they studied, the remainder of 
KI values reported in this paper were calculated with the 
MCC technique. 

FRACTURE TOUGHNESS DETERMINATION 

Previous analyses of the modified ring test utilized an 
applied force formulation and concentrated on charac- 
terizing the effects of specimen geometry on the critical 
crack length (ac) and maximum mode I stress intensity 
(Klmax) determined for a given material [e.g. l, 13]. This 
previous research demonstrated the reproducibility of 
model results for a given material and modeling pro- 
cedure. In contrast, we examine the influence of various 
model parameters on the Kimax observed in any particular 
specimen and thereby discuss the accuracy of Ktc deter- 
mined from MR tests. For any given specimen geometry, 
the solution for Ktm,x and hence K=¢ obtained from a MR 
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Table 1. Effects of mesh refinement and method of  calculation on the 
mode I stress intensity factor determined under constant force and 
slip-allowed boundary conditions for a modified ring specimen with 
normalized dimensions: ri/r~ = 0.1307 and L/ro = 0.3992. In this 
model, Young's modulus = 9 GPa,  Poisson ratio = 0.32 and normal- 
to-the-boundary, axial stress = 2.238 MPa. Numbers  in bold are the 
peak stress intensity factors (i.e. Kit) encountered during crack growth 

Crack Length, a 
(mm) K l (DC) K l (MCC) K l (J) 

(a) For the origmal, unrefined mesh 
I0 120.66 123.79 129.45 
12 125.18 127.72 133.45 
14 131.49 133.83 139.93 
16 138.48 141.32 147.74 
18 147.05 148.20 155.82 
20 151.39 154.51 161.28 
22 155.33 158.18 165.83 
24 154.98 158.79 166.70 
26 149.05 155.00 161.96 
28 137.86 144.37 150.57 

(b) After one cyc&ofmesh refinement 
10 122.96 123.17 122.92 
12 126.90 126.70 126.59 
14 133.05 133.01 132.78 
16 140.12 140.03 139.65 
18 147.96 147.90 147.63 
20 153.16 153.47 153.01 
22 157.42 157.64 157.35 
24 157.29 158.34 157.92 
26 152.18 153.96 153.51 
28 141.29 143.58 143.17 

(c) After two cyc&sofmesh refinement 
10 123.03 123.11 122.95 
12 126.70 126.70 126.59 
14 132.99 132.86 132.74 
16 139.93 139.82 139.61 
18 147.79 147.80 147.60 
20 153.26 153.24 152.99 
22 157.34 157.53 157.43 
24 157.62 158.19 157.97 
26 152.91 153.86 153.56 
28 142.37 143.54 143.24 

(d) After three cycles of mesh refinement 
10 123.26 122.96 122.92 
12 126.89 126.55 126.52 
14 133.04 132.66 132.67 
16 140.00 139.63 139.52 
18 147.95 147.63 146.52 
20 153.39 153.04 152.91 
22 157.64 157.39 157.31 
24 158.07 158.02 157.91 
26 153.50 153.66 153.50 
28 143.03 143.36 143.17 

test under either an applied force or  an applied displace- 
ment formulation depends on several model input 
parameters. 

Applied force solution 
To date, the numerical modeling portion of the M R  

test has been solved using an applied force formulation 
assuming no slip between the specimen and the loading 
platens [e.g. 2]. To determine the fracture toughness of 
a specimen under these conditions, one simply takes the 
value of the local load minimum recorded during a 
laboratory test (a J ,  applies an equivalent uniform stress 
to a sample in a numerical simulation, and calculates the 
K~ vs a curve corresponding to that specimen geometry 
and stress. The K~mx in the resulting curve is the fracture 
toughness of the tested material. The solution for K~c 

obtained in this formulation depends on the local load 
minimum (trac), the behavior of the specimen-platen 
interface, and the Poisson ratio (v) of the test material. 

Figure 6 illustrates the influence of slip at the speci- 
men-platen interface on the K~ vs a curves obtained in 
an applied force formulation. All K, values are reported 
after three cycles of mesh refinement. Although Kt is 
initially greater under slip-allowed conditions, K~m~ in 
the no-slip case exceeds K~max for the slip-allowed case, 
and K~max is achieved at longer critical crack lengths 
under no-slip conditions. These variations in K~m~x and 
ac result from differences in the initial distribution of axx 
along the y-axis of the specimen as depicted in Fig. 7. 
Initial K~ values are greater under slip-allowed con- 
ditions because the maximum tensile stress near the 
edge of the specimen hole is greater for this situation. 

Table 2. Effects of  mesh refinement and method of  calculation on the 
mode I stress intensity factor determined under constant displacement 
and slip-allowed boundary conditions for a modified ring specimen 
with normalized dimensions: r~/r~ = 0.1307 and L/r¢ = 0.3992. In this 
model, Young 's  m o d u l u s =  9GPa ,  Poisson ratio =0 .32  and axial 
displacement = -0 .1  mm.  Numbers  in bold are the peak stress inten- 

sity factors (i.e. K,c ) encountered during crack growth 

Crack Length, a 
(mm) K l (DC) g~ (MCC) K l (J) 

(a) Forthe origmaL unrefined mesh 
10 815.56 839.74 877.69 
12 817.92 837.69 874.69 
14 827.72 845.60 883.86 
16 834.52 855.40 893.82 
18 840.54 851.60 895.08 
20 810.96 833.42 869.47 
22 760.37 788.19 825.83 
24 688.27 714.68 749.46 
26 575.54 610.48 636.42 
28 439.56 475.29 493.79 

(b) After one cyc& of mesh refinement 
10 832.47 835.32 833.42 
12 830.57 830.89 829.78 
14 839.11 840.53 829.31 
16 845.91 847.49 844.80 
18 847.81 849.86 848.12 
20 823.14 827.88 825.04 
22 780.45 785.51 783.77 
24 703.13 712.62 710.25 
26 593.40 606.37 604.15 
28 457.58 472.13 470.23 

(c) After two cycles of mesh refinement 
10 833.73 835.00 833.73 
12 829.94 830.73 829.94 
14 839.43 839.43 838.64 
16 845.91 846.07 844.80 
18 847.81 849.23 847.96 
20 825.04 826.62 825.04 
22 781.87 874.88 784.25 
24 706.93 711.99 710.72 
26 599.25 605.89 604.47 
28 464.70 471.97 470.55 

(d) After three cycles of mesh refinement 
10 835.63 834.05 833.58 
12 831.52 829.78 829.46 
14 839.11 838.32 838.17 
16 846.70 844.96 844.33 
18 849.39 848.28 847.49 
20 826.46 825.35 824.72 
22 784.25 784.25 783.61 
24 710.29 711.04 710.40 
26 602.89 605.10 604.15 
28 468.49 471.34 470.55 
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Fig. 5. Method of mesh refinement in FRANC. Note that the area utilized in calculating the ,/-integral is constant, but that 
the number of elements in the domain of integration increases by a factor of two during each successive refinement cycle. 

However, with increasing crack length, K~ is increasingly 
affected by the zone of crack-normal compression near 
the specimen loading surfaces. Because this zone of 

compression extends farther into the sample and 
crack-normal compressive stresses are greater in the slip- 
allowed case, ao is shorter and K~m~ is less in this case. 
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Table 3. Critical crack lengths (ac) and maximum mode I stress intensities (glmax) 
determined for MRS specimens with normalized dimensions r~/r~=O.1307 and 
L/re = 0.3992 under slip and no-slip boundary conditions and various Poisson ratios. 
Results obtained for an applied constant stress (c%) of 2.238 MPa in models where crack 

growth was in 2mm increments starting from an initial crack length (a~) of 10mm 

No slip allowed Slip allowed 

Poisson ratio (v) a¢ (mm) Klm~x (kPa 'm 1/2) ac (mm) glmax (kPa 'm 1/2) 

0.10 28 197.50 24 157.92 
0.15 28 190.94 24 157.94 
0.20 26 183.68 24 157.97 
0.25 26 178.21 24 158.00 
0.30 26 171.96 24 158.02 
0.35 24 166.21 24 158.03 
0.40 24 161.21 24 158.08 

The numerical results summarized in Tables 3 and 4 
demonstrate that the difference in K~max and ac observed 
for the slip and no-slip cases varies dramatically with 
the Poisson ratio (v) of the test material. Although 
critical crack lengths and glmax a r e  essentially constant 
for all v in the slip-allowed case, ac and KImax 
both increase with decreasing v under no-slip conditions. 
Consequently, accurate constraint on the behavior of 
the specimen-platen interface is highly important in 
the reduction of data from MR tests, especially for 
materials with lower Poisson ratios. For v ~< ,-~0.20, 
the difference in K~max between the slip and no-slip 
cases can be as great as 25%. Therefore, MR tests on 
materials with v in this range will yield questionable 
fracture toughness results unless both v and the behavior 
of  the specimen-platen interface are accurately estab- 
lished. 

Applied displacement solution 

Obtaining a solution for K~c in an applied displace- 
ment formulation initially appears more labor intensive 
than obtaining a solution in an applied force formu- 
lation because in the former problem, K~max depends not 
only on the vertical displacement of  the specimen load- 
ing surfaces (v) and v, but also on the Young's modulus 
(E) of  the test material. However, as shown below, in 
the displacement formulation there exists a relation- 
ship between material elastic properties, v and K~ . . . .  

that allows determination of the fracture toughness of 
a MR specimen directly from the load vs time 
curve recorded during any laboratory experiment; 

knowledge of the elastic properties and displacement is 
not required. 

In our displacement formulation of the MR test, a 
uniform vertical displacement (v) is applied to one 
loading surface and the other surface is fixed [Fig. 4(b)]. 
Although any arbitrary values of v, v, and E can be 
chosen for the model, we chose values representative of  
granular, freshwater ice Ih because our experiments were 
conducted to determine K~c of this material (see [23]). 
After each increment of crack propagation in the model, 
we calculate KI, the distribution of normal stress (O'yy) 
along the specimen loading surfaces, and the "equivalent 
uniform stress" (a) on the specimen loading surfaces. 
Under a uniform displacement boundary condition, 
normal-to-the-boundary stress (ayy) along the specimen 
loading surfaces is non-uniform and exhibits a concave 
upwards profile like that shown in Fig. 8(b). To relate 
this non-uniform stress distribution to the time-varying 
stress (in a reality a force) recorded in the lab, we first 
integrate the area under the O'yy distribution, and then 
calculate an equivalent uniform stress, a: a uniform 
stress with the same integrated stress as the actual tryy 

distribution [Fig. 8(c)]. The normal stress a is assumed 
to represent the time-varying stress recorded in the lab. 
Fischer [24] demonstrated the validity of this assumption 
by applying a uniform stress to a model loading surface, 
calculating the O'yy distribution, and then determining the 
equivalent uniform stress along the surface. For the 
specific case tested, his results show that the equivalent 
uniform stress is within 0.4% of the designated applied 
stress. 

Table 4. Critical crack lengths (ac) and maximum mode I stress intensities (K~m~x) 
determined for MRF specimens with normalized dimensions ri/re=O.1709 and 
L/ro = 0.3077 under slip and no-slip boundary conditions and various Poisson ratios. 
Results obtained for an applied constant stress (a~c) of 1.053 MPa in models where crack 
growth was in 3 mm increments starting from an initial crack length (a0 of  20 mm 

No slip allowed Slip allowed 

Poisson ratio (v) ac (mm) K,m~ x (kPa. m 1/2) a c (mm) glmax (kPa. m t/2) 

0.10 53 133.16 44 109.41 
0.15 50 129.04 44 109.41 
0.20 50 126.06 44 109.41 
0.25 50 122.70 44 109.41 
0.30 50 118.84 44 109.41 
0.35 47 115.25 44 109.43 
0.40 44 112.31 44 109.43 
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Fig. 8. Calculation of equivalent uniform stress: (a) location of 
measurement for Oyy distribution; (b) schematic distribution of ayy 
observed along specimen loading surface; (c) schematic equivalent 

uniform stress with the same integrated stress as in (b). 

The fracture toughness of a given specimen subjected to 
uniform displacement boundary conditions is deter- 
mined simply by dividing the stress at time tc (Fig. 2) by 
the ratio of aac to Klm~x determined from the finite 
element model. The ratio O'ae/glmax has units of 
(length)- t/2, and is essentially a shape factor characteriz- 
ing the geometry of the particular MR specimen ana- 
lyzed in the finite element model. This MR shape factor 
can be used to calculate the fracture toughness of any 
specimen with the same normalized dimensions as the 
model specimen (i.e. ri/r e, L/re). 

Tables 5 and 6 present values of trJK~m,x determined 
for different Poisson ratios for the MRS and MRF 
specimen geometries examined in this study. These 
results indicate that for a given specimen geometry, the 
variation in trac/Klmax with v is slight and nonsystematic, 
demonstrating that o,c/K~m,x is also a constant essentially 
independent of v. In addition, although ac increases with 
decreasing v for the no-slip case, the average value of 
trac/glmax in this case is only slightly lower than that 
determined for the slip-allowed case. The differences in 
Kic determined for the slip and no-slip cases are thus 
expected to be less than 5% for the MRS and less than 
2% for the MRF specimen geometries. These values are 
not affected by the mesh geometry or the crack tip 
positions chosen in our numerical models as demon- 
strated by the numerical results in Table 7. In this table 
we show O'ac/Klmax ratios calculated for MRF specimens 
in which each crack growth increment is 3 mm, but the 
initial crack length is 1.5 mm longer than in Table 6. This 
approach yields aao/Klm~x values at crack lengths that fall 
halfway between the crack lengths in the model con- 
ducted for Table 6. Comparison of Tables 6 and 7 
indicates that our particular modeling procedure (i.e. 
initial crack length, crack tip positions, mesh geometry, 
etc.) does not bias the numerical results. 

Figures 9-11 depict the variation in K~, the normal-to- 
the-boundary stress (O'yy) distribution along the loading 
surface, and equivalent uniform stress (a) observed 
during incremental crack growth in a MRS specimen 
with different elastic parameters or applied displace- 
ment. These three models are presented to establish a 
relationship between E, v, and glmax observed in MR 
tests conducted under uniform applied displacement 
boundary conditions, equivalent to loading by rigid 
platens. Comparison of the model results reveals that 
although the absolute magnitudes of K~ and tr vary 
between each model after each increment of crack 
growth, the ratio of equivalent uniform stress at 
the critical crack length to maximum stress intensity 
factor observed in the finite element model (O'ac/glmax) is 
a constant independent of E and v. This suggests the 
ratio trac/glmax may be used to determine the fracture 
toughness of an identical test specimen using the re- 
lationship: 

Klmax /model \KIc/lab" 

DISCUSSION 

Figure 12 summarizes the effects of Poisson ratio, 
finite element numerical formulation and speci- 
men-platen interaction on the fracture toughness values 
determined from our MRS and MRF specimens. The 
results show several significant characteristics. For an 
applied force formulation, we note the following trends: 
(1) when slip is not allowed, Kit increases strongly with 
decreasing Poisson ratio of the test material; (2) when 
slip is allowed, K~¢ is independent of v; and (3) the 
difference in K~ calculated for slip and no-slip conditions 
increases with decreasing v. For an applied displacement 
formulation, we note that: (1) K~c is essentially indepen- 
dent of v under both slip and no-slip conditions; and (2) 
the variation in Kit as a function of slip at the speci- 
men-platen interface is less than 5% for the two speci- 
men geometries we examined. These results demonstrate 
that K~¢ values determined from the MR test vary with 
the assumed mode of load application, and depending 
on the formulation method used, the results further 
demonstrate that Kx¢ may vary dramatically with speci- 
men-platen interaction and the Poisson ratio of the test 
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Fig. 10. Variation in Kj (a), horizontal distribution of normal stress, ~ryy, (b) and equivalent uniform stress, a (c) during crack 
growth in a MRS specimen compressed by 0.1 ram, and with material properties o fE  = 90 GPa, and v = 0.32 under slip-aUowed 
conditions. Except for the order of magnitude difference in E, all aspects of this model are identical to the model used to 

calculate the results in Fig. 9. 
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conditions. Except for the order of magnitude difference in v, all aspects of this model are identical to the model used to calculate 

the results in Fig. 9. 
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Table 5. Ratios of a~/Kim ~ determined for MRS specimens with 
normalized dimensions ri/r c = 0.1307 and L / r  e = 0.3992 under slip and 
no-slip boundary conditions and various Poisson ratios. These values 
determined from K~ vs a curves where crack growth was in 2 mm 

increments starting from an initial crack length (ai) of 10 mm 

No slip allowed Slip allowed 

Poisson ratio ao O'ac/Klmax a c aac/Klmax 
(v) (mm) (m-l/2) (mm) (m-I/2) 

0.10 20 15.2482 18 15.7228 
0.15 20 15.2877 18 15.8822 
0.20 18 15.6492 18 15.7402 
0.25 18 15.6167 18 15.8988 
0.30 18 15.5798 18 15.7301 
0.35 18 15.5453 18 15.8738 
0.40 18 15.4986 18 15.6679 

Mean 15.4894 15.7880 
SD 0.1592 0.0938 

Table 6. Critical crack lengths (ac) and ratios of aao/Kt~ ~ determined 
for MRF specimens with normalized dimensions r~/re = 0.1709 and 
L/re = 0.3077 under slip and no-slip boundary conditions and various 
Poisson ratios. These values determined from K l vs a curves where 
crack growth was in 3 mm increments starting from an initial crack 

length (al) of 20mm 

No slip allowed Slip allowed 

ac O'ac/glmax a c O'ac/glmax 
Poisson ratio (v) (mm) (m -1/2) (mm) (m -l/:) 

0.10 38 9.5337 32 9.8204 
0.15 38 9.4511 32 9.8317 
0.20 38 9.3665 32 9.8330 
0.25 38 9.2811 32 9.8313 
0.30 38 9.1885 32 9.8258 
0.35 32 9.5982 32 9.7972 
0.40 32 9.4451 32 9.7453 

Mean 9.4092 9.8121 
SD 0.1421 0.0320 

Table 7. Ratios of aaclKxm~ determined for MRF specimens with 
normalized dimensions ri/r e = 0.1709 and L / r  e = 0.3077 under slip and 
no-slip boundary conditions and various Poisson ratios. These values 
determined from K l vs a curves where crack growth was in 3 mm 

increments starting from an initial crack length (ai) of 21.5 mm 

No slip allowed Slip allowed 

ao ~ / K t m , x  ao a,c/g~m~x 
Poisson ratio (v) (ram) (m- 1/2) (ram) (m- 1/2 ) 

0.10 39.5 9.3978 33.5 9.7088 
0.15 36.5 9.6194 33.5 9.7158 
0.20 36.5 9.5149 33.5 9.7222 
0.25 36.5 9.4014 33.5 9.7207 
0.30 36.5 9.2891 33.5 9.7108 
0.35 36.5 9.1730 33.5 9.6894 
0.40 33.5 9.3143 33.5 9.6346 
Mean 9.3871 9.7003 
SD 0.1480 0.0310 

material. In light of  the potential 10-40% variation in 
K~c values determined from the M R  test, one would like 
to know which modeling procedure provides the most 
accurate results. To asses the accuracy of  each of  the 
four modeling procedures depicted in Fig. 12, we now 
discuss some aspects of  the observed and expected 
specimen behavior. 

Though often used in finite element simulations of  
the M R  test [e.g. 2], application of  a uniform force 
along the specimen loading surfaces results in a non- 

uniform distribution of  displacement (v) along each 
specimen loading surface (Fig. 13). This non-uniform 
displacement distribution occurs because the hole in 
the center of  the specimen reduces the effective stiffness 
in the central portion of  the specimen, resulting in 
greater displacements along the center of  the loading 
surfaces. The variation in displacement along the speci- 
men loading surfaces is slight, but the effect is real. 
Although such behavior may occur for specimens in 
which the Young's  modulus is of  the same order of  
magnitude as that of  the loading platens, it is not 
likely to occur in laboratory tests on rock or ice, 
where the Young's  modulus of  the steel loading 
platens is one to two orders of  magnitude greater 
than that of  a test specimen. Because uniform displace- 
ment of  the specimen loading surfaces appears to be the 
most realistic representation of  actual specimen defor- 
mation, fracture toughness values obtained from 
numerical simulations not incorporating a uniform 
displacement of  specimen loading surfaces may be 
suspect. 

As noted by Jaeger and Cook [25], a no-slip 
boundary condition is generally assumed for rock mech- 
anics experiments because large compressive normal 
stresses and friction on the specimen loading surfaces 
inhibit lateral expansion of  the specimen. With varying 
degrees of  success, numerous techniques including the 
use of  lubricants [e.g. 26], special specimen geometries 
[e.g. 27], platen geometries [e.g. 28], and matched 
specimen end pieces [e.g. 29] are used to reduce the 
effects of  friction at the specimen-platen interface. 
As shown in Fig. 12, slip at the specimen-platen inter- 
face does not significantly affect K~c values determined 
from M R  tests conducted with our displacement 
formulation, regardless of  the Poisson ratio of  the 
test material. However, in an applied force formulation, 
slip at the specimen-platen interface not only affects 
the K~c value determined for a given material, but it 
also determines the functional relationship between Kic 
and v. 

In the traditional no-slip, applied force modeling 
procedure, Kit decreases with increasing v, because the 
no-slip boundary condition prevents lateral motion of  
the specimen loading surfaces. Under these conditions, 
crack-normal  compressive stress near the specimen load- 
ing surfaces (e.g. Fig. 2) increases and extends further 
into the specimen with increasing v, because the tendency 
for lateral deformation of a specimen is naturally greater 
in materials with larger v. As demonstrated by the 
numerical results in Tables 3 and 4, the presence of  a 
tensile to compressive stress transition at deeper levels 
within the M R  specimen causes critical crack lengths to 
decrease with increasing v. This decrease in critical 
crack length is responsible for the relationship between 
K~o and v observed in no-slip, applied force simulations. 
When slip is allowed at the specimen-platen interface, 
lateral expansion of the specimen is not inhibited, and 
critical crack length is always independent of  v in both 
an applied force and displacement formulation (see 
Tables 3-7). 
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Fig. 12. Effects of Poisson ratio, solution method and specimen-platen interaction on fracture toughness values determined 
from the modified ring test: (a) fracture toughness values determined from MRS specimens when tr~ = 2.238 MPa; (b) fracture 
toughness values determined from MRF specimens when trac= 1.053 MPa. These trac values are typical of those observed 
by Fischer [23] for granular, polycrystalline ice and tim, respectively. Results for the applied force formulation are given 
in Tables 3 and 4, whereas results for the applied displacement formulation are calculated using the cr~/K=,,~ ratios in 

Tables 5 and 6. 

The dependence of K~¢ on v observed in no-slip, 
applied force simulations represents the response of the 
unique MR specimen geometry to a given set of bound- 
ary conditions; it does not reflect the real influence of 
v on K~¢. In nature, we expect only a slight influence of 
v on Kx¢ for the following reason. Work by Gross et al. 
[35] and Whittaker et al. [13] comparing experimental 
data on the elastic moduli [e.g. 30-32] and fracture 
toughness of rocks [e.g. 33, 34], suggests that rock frac- 
ture toughness typically increases with increasing 
Young's modulus. The general relationship observed 
between K=c and E is such that for an order of magnitude 
increase in E, K~¢ increases by a factor of 2-5. For a 
constant shear modulus (G), the linear elastic relation 
between v, E and G, suggests E increases by a factor of 
1/3 over the whole range of v. These two relationships 

R M M S  3 3 / I - - B  

suggest that K=c should increase by ~< 5% as v increases 
from 0 to 0.5. Data presented by Whittaker et al. [13] 
show no strong correlation between Poisson ratio and 
fracture toughness, but may be interpreted to support 
the idea that K=c increases slightly with v. 

Our discovery of a relationship between Ktc and v in 
the applied force, no-slip modeling procedure that is the 
inverse of the expected natural relationship between K== 
and v, leads to further questions about the validity of Kl¢ 
values determined under applied force, no-slip con- 
ditions. Although these contradictions may be attributed 
to the unique geometry of the MR specimen, we are 
suspicious why K~¢ should be so strongly dependent on 
v for only this particular modeling procedure. It is 
possible that the MR test is uniquely dependent on v 
because of the specimen geometry. The majority of plane 
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Fig. 13. Geometry of deformation in an MRS specimen when constant stress of 2.238 MPa is applied directly to the specimen 
loading surfaces, and slip is allowed between the specimen and loading platen. Thick gray lines represent the original shape 
of the specimen. Deformation magnified 500 times for illustration. Similar deformation occurs when slip is not allowed at the 

specimen-platen interface. 

strain KI~ tests are tensile or bending tests where necking 
cannot occur, and there is no significant component of 
lateral deformation. However, because the MR test 
involves compressive loading, significant lateral defor- 
mation may occur, and Poisson ratio is an important 
parameter. We believe the effects of specimen-platen 
interaction are accurately reflected in the general 
increase in K~ between slip and no-slip boundary con- 
ditions (Fig. 12), but note that further laboratory testing 
is necessary to accurately constrain the relationship 
between K~ and v observed in MR specimens. 

CONCLUSIONS 

For a given specimen geometry, fracture toughness 
values determined from finite element numerical modeling 
of MR tests may be significantly different depending on: 
(1) the use of applied force or displacement formulations; 
(2) assumed conditions of slip at the specimen-platen 
interface; and (3) the Poisson ratio of the test material. 
For the two specimen geometries examined, we observe 
that in both the applied force and displacement methods, 
slip at the specimen-platen interface always reduces the 
Kic calculated from numerical modeling. Our analyses 
further suggest that in an applied force formulation, Kic 
is independent of v when slip is allowed at the specimen- 
platen interface, but that when slip is not allowed, K~o 
increases with decreasing v. In an applied displacement 
formulation, K~c is essentially independent of v, regardless 
of slip at the specimen-platen interface. In general, the 
applied force formulation with a no-slip boundary con- 
dition always yields an upper bound estimate of K~, 
whereas K~¢ values determined from an applied displace- 
ment formulation allowing slip at the specimen-platen 
interface should be considered lower bound estimates. 

We advocate the use of uniform displacement formu- 
lations in representing MR specimen behavior because 
this condition more faithfully represents the laboratory 
applied loading conditions. A further important benefit 
of this approach is that K~ magnitudes are relatively 
insensitive to all material properties, thereby eliminating 
the need for additional laboratory tests. However, until 
further testing facilitates determination of the single, 
most accurate modeling procedure, future reports of K~0 
values determined from the MR test should be ac- 
companied by detailed descriptions of the modeling 
technique, including an explanation of the method of 
stress intensity factor calculation and tests to character- 
ize the sensitivity of such calculations to various model 
parameters. Although we characterize the sensitivity of 
Kit values to many modeling parameters in the finite 
element program FRANC, the sensitivity of K~c calcu- 
lations remains to be characterized for other numerical 
modeling programs. Such characterizations are particu- 
larly important for numerical modeling routines which 
utilize crack-tip elements with embedded singularities or 
different methods of stress intensity factor calculation. 
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