JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. B4, PAGES 7231-7246, APRIL 10, 1994

The apparent friction of granular fault gouge
in sheared layers

David R. Scott!

Southern California Earthquake Center, University of Southern California, Los Angeles

Chris J. Marone

Department of Earth, Atmospheric and Planetary Sciences
Massachusetts Institute of Technology, Cambridge

Charles G. Sammis

Department of Geological Sciences, University of Southern California, Los Angeles

Abstract. Data are presented from a series of experiments on layers of granular
quartz gouge in the double-direct-shear geometry at a normal stress of 25 MPa.
The apparent friction of a layer, defined as the ratio of the applied shear and normal
stresses, shows considerable variability depending on the thickness of the layer and
the particle size distribution of the gouge. Measurements of layer thickness during
the experiments also show that the layers thin as shearing proceeds. Layer thinning
is attributed to the processes of extrusion and densification, and by analyzing
these processes the observed variations in apparent friction are reconciled with a
constant coefficient of internal friction for quartz gouge. For thinning due only to
extrusion, the prinicipal assumption made is that the deviatoric stress and plastic
strain rate are coaxial. When densification is also admitted, a simple flow law
with one adjustable parameter is required to relate the volumetric and shear strain
rates. The results and analysis show that (1) extrusion and densification must be
considered when interpreting the measured frictional properties of gouge layers; (2)
shear localization is inhibited in these experiments; and (3) the apparent friction of
a natural fault zone may be less than sin ¢, where tan ¢ is the coefficient of internal

friction of gouge in the fault zone.

Introduction

Natural faults are in general marked not by a sharp
planar contact between walls of intact country rock but
rather by a finite layer of damaged fault rock. Fault
gouge, a granular material found in many fault zones,
is formed by fragmentation of the intact country rock as
the fault develops. Shear motion may be accommodated
by distributed strain in the gouge layer or by slip on
localized surfaces within the gouge; in either case, the
frictional properties of the fault zone are presumably
controlled by the gouge.

A distinction can be made between granular gouge
and clay gouge. In granular gouge, the mineralogy of
the country rock (typically dominated by quartz) is un-
changed, although a large proportion of the gouge is
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very fine grained. In clay gouge, the mineralogy of the
gouge 1s also substantially altered from that of the coun-
try rock. This study is concerned with the mechanical
behavior of granular gouge.

A number of experimental studies of rock friction
have been directed toward assessing the effect of a
gouge layer on the frictional properties of a simulated
fault zone. The experimental geometries used include
double-direct-shear [Dieterich, 1981; Biegel et al., 1989;
Marone and Kilgore, 1993], triaxial sawcut [Engelder et
al., 1975; Summers and Byerlee, 1977; Byerlee et al.,
1978; Logan et al., 1979; Shimamoto and Logan, 1981;
Marone et al., 1990], and rotary shear [Mandl et al.,
1977; Tullis et al., 1989].

Much of this work has focused on understanding the
time dependence and rate dependence of friction. The
associated variations in friction are small (1-2%, if the
sliding rate changes by an order of magnitude), but they
control the stability of frictional slip and hence the seis-
mic potential of faults. Here, our focus is on varia-
tions in the basic, rate-independent frictional strength
of gouge layers. The strength variations we discuss are
independent of those due to variations in pore fluid pres-
sure [e.g., Byerlee, 1990; Rice, 1992].
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The following phenomena are discussed in many of
the studies listed above and are of particular interest in
this study.

1. The frictional strength of a gouge layer depends
on its thickness, the grain size distribution, and to a
lesser extent on the roughness of the solid surfaces that
confine the layer [e.g., Dieterich, 1981].

2. Grain fragmentation 1s an active process in gouge
deformation and results in a power law distribution of
grain size regardless of the initial state [e.g., Biegel et
al., 1989].

3. Oblique Riedel shears are ubiquitous in sheared
layers after moderate amounts of strain [e.g., Logan et
al., 1979].

4. During shear, the orientation of stress in a gouge
layer (either measured or inferred from the microstruc-
ture) evolves to bring the maximum compressive stress
to an angle of 45° to the layer, regardless of the orien-
tation of stress outside the layer [e.g., Mandl, 1977).

In this study we present observations and analysis
that reveal the mechanics linking these phenomena. De-
tailed observations of the thinning of gouge layers dur-
ing double-direct-shear experiments show a strong cor-
relation between the amount of layer thinning and the
frictional strength. This behavior i1s analyzed using
rate-independent Mohr-Coulomb plasticity, extending
an approach suggested by Byerlee and Savage [1992].
The observations are found to be consistent with a con-
stant coefficient of internal friction for quartz gouge in
plane strain.

Experiments

We carried out experiments in a double-direct-shear
apparatus, described in detail by Dieterich [1981] and
by Linker and Dieterich [1992]. In this geometry, a
pair of identical gouge layers are sandwiched between
three solid sample blocks (see Figure 1). This assembly
is compressed laterally by a servo-controlled hydraulic
ram, maintaining a constant normal stress on the gouge
layers. The central sample block is then forced down
between the gouge layers by a second servo-controlled
ram, while the side sample blocks are restrained from
moving vertically. The motion of the central sample
block is resisted only by the gouge layers and the ex-
periment therefore provides an accurate measurement
of the frictional strength of the gouge layers.

The exposed edges of the gouge layers are unconfined,
and gouge could in principle escape up, down, or later-
ally. In practice, most of the gouge lost from a layer is
carried beyond the lower edge of the side sample blocks
by the larger central sample block, as sketched in Fig-
ure 1. This observation is significant in the analysis of
these experiments, because it indicates that the gouge
is deforming in plane strain.

Table 1 lists the experimental conditions used in 23
experiments. Results from some of these experiments
have already been reported by Marone and Kilgore
[1993], who discuss aspects of the rate dependence of
friction in gouge layers.
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Figure 1. Schematic diagram of the double-direct-
shear experimental geometry, showing the sample as-
sembly before and after an experiment.

Sample Preparation

Gouge. Mosts of the experiments reported here
were performed using simulated gouge consisting of Ot-
tawa sand, a pure (>99.9%) quartz sand available com-
mercially from U.S. Silica Company, Ottawa, Illinois.

Table 1. Experimental Conditions

Experiment Gouge h, mm Sample Blocks
Type (Roughness)
u01 coarse 3 Westerley (50 pm)
u04 coarse 3 Westerley (0.2 gm)
u08 coarse 3 grooved steel
u09 coarse 6 grooved steel
ul0 coarse 1 grooved steel
ull coarse 6 Westerley (0.2 pm)
u23 coarse 6 grooved steel
u26 coarse 3 grooved steel
u27 coarse 10 grooved steel
u29 coarse 1 grooved steel
u02 medium 3 Westerley (0.2 pm)
u03 medium 3 Westerley (50 pm)
u07 ultrafine 1 Westerley (50 pm)
ul2 ultrafine 1 grooved steel
ull ultrafine 3 grooved steel
ul4 ultrafine 6 grooved steel
u22 ultrafine 3 grooved steel
uls fractal 6 grooved steel
ulé fractal 3 grooved steel
ul7 fractal 1 grooved steel
u3l Lopez 3 grooved steel
u32 Lopez 6 grooved steel
u33 Lopez 1 grooved steel
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Four different initial grain size distributions were used:
(1) coarse gouge (ASTM C-190), containing well-sorted
grains with diameters in the range of 400-800 yum, (2)
medium gouge, prepared by crushing and sieving the
coarse gouge to leave grains with a range of diame-
ters below 106 pm, (3) ultrafine gouge (Silcosil #400
mesh), with median and maximum grain diameters of
1.4 pm and 10 pm, respectively [see Marone and Kil-
gore, 1993], and (4) fractal gouge, intended to simulate
the power law grain size distribution found in natural
fault gouge [Sammis et al., 1987; Sammis and Biegel,
1989]. Crushed sand was sieved into size fractions each
having a size range of approximately a factor of 2: <45
pm, 45-90 pm, 90-175 pm, 175-350 pm and 350-710
pm. These fractions were then remixed in measured
proportions to produce a power law grain size distribu-
tion (see Biegel et al. [1989] for details).

A few experiments were performed using natural gouge
from the Lopez fault in the San Gabriel fault zone, Cal-
ifornia. A site description is given by Sammis et al.
[1987]. The Lopez gouge is mostly quartz, with minor
albite and 5-10% smectite [Scott et al. 1994]. Sammis et
al. [1987] and Sammis and Biegel [1989] measured grain
sizes in Lopez gouge and found that there is a power law
distribution over the size range of 5-1000 um.

The grain size distribution of the gouge layers evolves
during the experiments due to grain fragmentation. In
particular, the coarse gouge was quickly crushed to pro-
duce finer grains.

Sample blocks. Most of the experiments were per-
formed using grooved steel sample blocks (see Table 1).
The surfaces of the steel facing the gouge layers were
roughened by a regular array of square grooves 250 ym
wide, 500 pym deep, and spaced 250 ym apart. The
grooves were oriented perpendicular to the direction of
shearing.

A few experiments were performed using Wester-
ley granite sample blocks with different surface rough-
nesses, including some with very smooth surfaces (#600
grit polish, 0.2 um rms surface roughness).

Initial layer thickness. The gouge layers were
prepared, using a jig, to give an initial thickness of be-
tween 1 and 10 mm at room pressure (see Table 1). The
thinnest layers of coarse gouge were initially a mono-
layer of grains separating the sample blocks. The initial
thicknesses of the two layers in an individual experiment
differed by no more than 5%. All the gouge layers were
initially 50 mm in length and width, matching the di-
mensions of the smaller side sample blocks.

After the total thickness of the assembly on the bench
was measured, the assembly was inserted into the load
frame and a small normal load was applied. From this
point, relative changes in the combined thickness of the
two layers were measured with a displacement trans-
ducer (DC-LVDT). Note that the layer thickness data
presented below were measured at a normal stress of 25
MPa and are therefore smaller than the initial thick-
nesses, even before shearing.
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Typical Results

During each experiment the applied normal and shear
stresses, layer thickness, and shear displacement were
continuously recorded by a microcomputer. The stresses
were measured using conventional load cells. The shear
displacement was measured with a displacement trans-
ducer and later corrected for elastic distortion of the
experimental apparatus. In all the experiments, the
normal stress was held constant at 25 MPa by servo
control. The shear displacement rate was also servo-
controlled. Typical results for a single experiment are
shown in Figure 2.
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Figure 2. Results from a single experiment (ul6) that
used simulated quartz gouge with a fractal grain size
distribution, and rough steel sample blocks. All the
quantities are shown plotted against shear strain, which
was calculated by integrating §X/2h, using equation
(1). The total shear displacement X was 10 mm. (a)
Apparent friction y,, defined as the ratio of the applied
shear and normal stresses. The small fluctuations in
the latter part of the experiment are associated with
changes in the sliding velocity. (b) Thickness h of one
layer. This layer was 3 mm thick at room pressure and
2.1 mm thick under a normal stress of 25 MPa at the
initiation of shear displacement. (c) Rate of change
of layer thickness with respect to shear displacement
(the thinning ratio) T = dh/dX, as a solid line. This
derivative is calculated over increments of 0.5 mm in
shear displacement in order to provide some smooth-
ing. The dashed line is the predicted rate of “geomet-
ric thinning” due to extrusion Tg7, from equation (42).
(d) Volumetric strain, estimated from the difference be-
tween the observed and “geometric” rates of thinning,
using equation (49).
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Shear strain. The data shown are plotted against
shear strain rather than shear displacement; the shear
strain €y is defined as follows:

€y :/% (1)

where X is the shear displacement, and h is the layer
thickness. The coordinates z and y are parallel and
perpendicular to the layer, respectively (see Figure 3a).
In the example shown in Figure 2, the final shear dis-
placement was 10 mm and the average layer thickness
was 2 mm, so the final shear strain was around 2.5.

Apparent friction. The apparent friction y, of a
layer is defined as the ratio of the applied shear stress
05y and normal stress oyy:

Figure 3. Stress and strain in a sheared layer. The
shaded regions represent the solid sample blocks, sur-
rounding an unshaded gouge layer. (a) Coordinate sys-
tem and applied stresses; the oy and o,y components of
stress are measured, but the ¢,, component is not. (b)
Principal stresses; the angle 8 1s 45° for a layer of con-
stant thickness and is smaller for a layer that is thinning
(see equations (17) and (38)). (c) Slip planes showing
the sense of displacement. The low-angle slip planes are
presumed to correspond to the Reidel shears sketched
in Figure 1.
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fa = 22 (2)
loyy|

The applied stresses are shown in Figure 3a. It is as-

sumed that these stresses are uniform across both layers

and across the entire area of each layer.

The apparent friction of the layers initially rises rapidly
(see Figure 2a). By the time the shear strain has
reached about 0.3, the apparent friction has reached a
steady level, although some slow evolution is observed
during the remainder of the experiment.

Thinning ratio. The rate of change of layer thick-
ness is quantified by the thinning ratio 7', which is de-
fined as the rate of change in layer thickness h with
respect to shear displacement X:

T:ﬂ.

dX ®)

It is assumed that both layers thin at the same rate.

During the transient rise in apparent friction the lay-
ers thin rapidly, by about 10% of their initial thickness
(see Figure 2b). After the initial transient, the layer
thickness decreases more slowly, but layer thinning con-
tinues at a steady rate.

This observation is crucial; the continuing thinning
demonstrates unambiguously that strain is distributed
throughout the gouge layers. If strain were confined,
for example, to the boundary between the gouge layers
and the sample blocks; the steady thinning of the layers
would not occur. The observation of layer thinning is
the foundation of the analysis presented below.

Summary of Results

Figure 4 shows a summary of results from all the ex-
periments listed in Table 1. Each experiment is repre-
sented by a single symbol in each plot. A representative
point was chosen from the latter, steady state part of
each experiment, and the apparent friction, thinning
ratio, and instantaneous layer thickness were recorded.
These data are presented as plots of the apparent fric-
tion versus thinning ratio (Figure 4a) and the layer
thickness versus thinning ratio (Figure 4b). In Figure
4b, the layer thickness is scaled by the length of the side
sample blocks L, which is 50 mm in all the experiments
(see Figure 1).

Figure 4a shows a large range in apparent friction
and a clear negative correlation between the apparent
friction and the thinning ratio. There are no major
departures from this trend as a function of the gouge
type, although the lowest values of apparent friction
are all for coarse gouge. The types of sample block
are not shown in Figure 4, but no significant variations
were found as a function of the type or roughness of the
sample blocks. For example, experiments u02 and u03
gave almost identical results; both used 3 mm layers of
medium gouge, but the Westerley sample blocks were
rough in one case and very smooth in the other (see
Table 1).

Figure 4b shows that the higher thinning ratios are
associated with thicker layers. Also, at a given layer
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Figure 4. Summary of results from all the experiments, showing their fit to the theory presented
in the text for (a) apparent friction p, and (b) scaled layer thickness h/L, both as a function of
the thinning ratio 7. In both plots, the symbols show the data and the lines show the theory.
The legend indicates the types of gouge corresponding to the different symbols. Theoretical
predictions are shown for different values of the variable a: the lines in Figure 4a represent
equation (41), and the lines in Figure 4b represent equation (45). Layer thinning is attributed
entirely to extrusion when a = 1, and entirely to densification when a = 0. An intermediate case
(a = 0.4) is also shown on both plots; the region between a = 1 and a = 0.4 encompasses most

of the data in both plots.

thickness, the coarse gouge shows a higher thinning ra-
tio than do the other types.

Analysis

The goal of this analysis is to account for the trends
in apparent friction and layer thinning shown in Figure
4. This is accomplished by considering the two mecha-
nisms that could be responsible for layer thinning: (1)
extrusion of gouge from the center out to the unconfined
edges of the layer and (2) densification of the gouge by
grain rearrangement and fragmentation. The analysis
is developed in two stages. First, we assume that the
gouge density remains constant so that all the thinning
is attributed to extrusion. Second, densification of the
gouge is permitted providing an additional mechanism
for layer thinning.

The geometry used for this analysis is shown in Figure
3a. A Cartesian coordinate system (z, y, z) is used such

that z is parallel to both the layer and the direction
of shearing, y is perpendicular to the layer, and z is
parallel to the layer and perpendicular to the direction
of shearing. The layer has thickness h in the y direction
and length L in the & direction (see Figure 1). We follow
the convention that compressive stresses are negative.

Thinning due to Extrusion at Constant Density

In this section, the density of the gouge is assumed
to remain constant during shear deformation. Plane
strain is also assumed, so that variations in the z direc-
tion are not considered. The final assumption is that
the plastic strain rate tensor is directly proportional to
the deviatoric stress, which is the coaxiality assumption
commonly made in plasticity [Hll, 1960].

Plastic strain. An increment 6X of shear dis-
placement drives a change in layer thickness §h. The
following components of the incremental plastic strain
tensor can therefore be obtained directly:
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beyy = 5 4)
6X
5exy = ﬁ . (5)

Because the density is constant and strain is confined
to the z—y plane, the increment of extensional strain
within the layer é¢;, is equal and opposite to d¢yy. By
dividing the strain increments by an arbitrary time in-
crement, the strain rate tensor can be written as follows:

2T 1 ] (6)

éii:éw[ 1 9T

where the thinning ratio T is, as before, the rate of
thinning of the layer with respect to shear displacement:

dh  beyy
=— = . 7
dX  2beyy @

Note that T is negative when the layer is thinning. All
the quantities in the expression for the strain rate tensor
(6) are known.

Stress. The oy, and o,y components of stress are
measured directly. The o, component of stress is not
measured, but it can be estimated by using a relation-
ship between the stress and strain rate tensors. First,
it is convenient to decompose the stress tensor into its
isotropic and deviatoric parts:

(8)

~ /
oij = 065 + 05

stress
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where 6;; is the Kronecker delta. The mean stress ¢ is
given by
9)

and the trace of the deviatoric stress tensor o}; is zero.

This analysis now hinges on the assumption that the
deviatoric stress tensor in equation (8) is coaxial with
the strain rate tensor in equation (6), which can be
simply stated as follows:

7 =3(0zz + oyy)

!/ l..
G-O] = m€Z]

(10)

where m is an unknown scalar modulus that can vary
(e.g., with the total shear strain). Using equation (10),
the deviatoric stress can be written using the same ten-
sorial form used for the strain rate in equation (6):

=27 1
‘721' = Ouzy [ 1 oT ] (11)
By comparing the zz and yy components of this equa-
tion, the unknown o, component of stress can be con-
strained:
Oyy — 0oz = 4T 04y . (12)

The entire stress tensor is now determined.

Figure 5 shows a Mohr’s circle diagram representing
this state of stress. The center of the stress circle is
given by the mean stress &; from equations (9) and (12),
& can be written explicitly as follows:

(13)

Normal
stress

Figure 5. Mohr diagram showing the state of stress in a sheared layer that is thinning by
extrusion. The observed stresses (oyy and ogy) alone do not constrain the Mohr circle, but the
observed strain can be used to estimate the o,, component of stress and hence to determine the
stress circle. The apparent friction y, obtained directly from the observed stresses is significantly
smaller than the internal friction of the gouge, parameterized by tan ¢. In the limit of a layer
that does not thin, the observed stress lies at the apex of the circle; in this case, 6, = 0yy and
pg = sing. The angles in this diagram and Figure 3 are correctly scaled for sin¢ = 0.66 and

T = -0.2.
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Note that since oy, and & are negative,

1G] = |oyy| + 2T 00y - (14)
The radius of the stress circle 7 is an objective measure
of the shear stress in the z—y plane and is defined by:

2
2 _ 2 Oyy — Ozz
TS = 0%y + <—2—> .
Using equation (12),

T =0pyV/1+4T2 . (16)

The magnitudes of the principal stresses (o1 and o3)
are o & 7. In Figure 5, the principal stresses lie at the
intersection of the stress circle with the horizontal axis.
The orientation of the principal stresses is represented
by the angle f between the maximum compressive stress
and the y direction, which is also shown in Figure 5.
This angle can be obtained using equation (13) and the
Mohr diagram:

(15)

Ory 1

tan20 = ———— = — .
loyy —al 2|7

(17)

The orientation of the principal stress axes in the
layer is shown in Figure 3b. Note that when T' = 0,
0zy = Oyy = 0 and 05y = 7. In this case the principal
axes of stress lie at 45° to the layer; this result was ob-
served directly by Mandl et al. [1977] in experiments on
granular layers at low stress levels. Figure 3b and Fig-
ure 5 illustrate a case where T' < 0, |oyy| > || > 05|
and o5y < 7. In such cases the direction of maximum
compressive stress moves closer to the y direction, driv-
ing the layer thinning.

Slip planes and internal friction. According to
standard Mohr-Coulomb plasticity, the strain that ac-
companies this state of stress is accommodated by dis-
placement on sets of conjugate slip planes. As shown
in Figure 3c, these slip planes are positioned symmet-
rically about the direction of maximum compressive
stress, at angles +v¢. Byerlee and Savage [1992] note
that for the case of plane strain in an incompressible
material, slip on two sets of distinct planes can be com-
bined to give any macroscopic strain tensor.

The orientations of these slip planes are such that the
ratio of shear stress to normal stress acting on them is
at a maximum. This ratio, y, 1s an objective measure
of the intrinsic, or internal, frictional strength of the
gouge. The internal friction is conveniently parameter-
ized by the angle of friction ¢, where yu = tan ¢.

On the Mohr diagram (Figure 5) lines are shown at
angles +¢ to the horizontal axis that are tangent to the
stress circle. These lines represent the Mohr-Coulomb
failure envelope for plastic shear deformation; states of
stress outside these lines are not accessible. Note that
we assume that the cohesion of the gouge is negligible.
The slope of the failure envelope p is given by

(18)
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As shown in Figure 5, the angle of the slip planes 9 is
related to the angle of friction ¢ by

T

2¢:g—¢ = o= (19)

|o
If we note that the orientation of the maximum com-
pressive stress is given by 8, the angles of the slip planes
from the z direction, a; and «y, can be given by

T

o =——0-—19;

5 (20)

azzg—aw. (21)

These angles are shown in Figure 3¢ and Figure 5.

The shear planes defined by the angles a; and as
are referred to as Riedel shears. When the double-
direct-shear samples are disassembled, the low-angle
(a1) Riedel shears can be seen as planes along which
the gouge preferentially parts (see Figure 1).

Apparent friction. It has been noted previously
that the apparent friction of a gouge layer, as defined
by equation (2), is always less than the internal friction
p of the gouge. In fact, the apparent friction is the
sine of the angle of friction ¢ rather than its tangent.
This inference is implicit in a discussion by Logan et
al. [1979] and has been stated explicitly by Hobbs et al.
[1990] and Marone et al. [1992]. Byerlee and Savage
[1992] discuss the matter in more detail; their analysis
represents the limit where 7' = 0 and 6 = 45°, in which
case the apparent friction is simply the ratio of the shear
stress and mean stress:

B

fa = =sing . (22)

Qi

A line with this slope is shown in Figure 5; it runs
through the apex of the stress circle.

For cases where T' < 0, we can obtain a relationship
between the apparent friction p, and the thinning ratio
T by first using equations (14) and (16) to obtain the
ratio of the shear and mean stresses:

Ty V1 + 477

= o+ 2o

r
— (23)
lo|

Noting the definition of apparent friction (2) and rear-
ranging, we obtain:

_ sin ¢
 V1+4T2 —2Tsing

A line with this slope is shown on the Mohr diagram
for T' < 0, pg < sin @; it intersects the stress circle at a
normal stress oy, and a shear stress o;y.

The expression (24) contains only one adjustable ma-
terial parameter, sin ¢, which is directly related to the
internal friction g = tan ¢ and should therefore be con-
stant for a given material. For example, if 4 = 0.88
(é = 41.3°) the predicted apparent friction when T' = 0
is gy = 0.66. When T' = —0.1, the predicted appar-
ent friction drops to g, = 0.57. In this case, equation
(17) gives § = 39.3°, equation (19) gives ¥ = 24.4°, and

s (24)
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equations (20) and (21) give a3 = 26.3° and a5 = 75.1°,
respectively.

Comparison with observations. Thissimple the-
ory goes a long way toward explaining the observed
anomalies in apparent friction as a function of the ob-
served layer thinning. The solid line in Figure 4a shows
the apparent friction predicted by equation (24) with
sin¢ = 0.66 and provides an upper bound to all the
observations. If some random scatter were accepted, a
slightly smaller value for sin ¢ would fit most of the data
out to T' ~ —0.1. However, as the thinning ratio be-
comes large, the theory clearly predicts systematically
greater values for apparent friction than are observed.
As is shown below, a further reduction in the apparent
friction is predicted when densification of the layer is
occurring.

Thinning due to Extrusion and Densification

In this section we augment the theory presented above,
to assess the effect of gouge densification on the appar-
ent friction. The approach to this analysis is similar to
that used for the constant density case

1. Construct a strain rate tensor that admits changes
in volume, but retain the assumption of plane strain in
the z—y plane.

2. Construct a stress tensor, again assuming that the
stress and strain rate tensors are coaxial.

3. Use a flow law to relate the volumetric strain rate
to the shear strain rate and the state of stress.

Plastic strain. As before, the é,, and é,, com-
ponents of the plastic strain rate tensor are known. In
plane strain, only the é;, component is unknown, repre-
senting longitudinal strain in the layer. Figure 6 shows
a decomposition of the incremental strain into compo-
nents of shear, extrusion, and densification. A strain
rate tensor with these components may be written as
follows:

01 0 —2Ta 0 O
€ij = €qy I 0 0 | +4égy 0 2Ta O
0 00 0 0 0
0 0 0
+ &y | 0 2I'(1—a) O (25)
0 0 0

where the three terms on the right-hand side describe
shear, extrusion, and densification, respectively. T is
again the thinning ratio dh/dX and is negative. The
variable a determines the distribution of the observed
thinning between extrusion and densification. When
a = 1, the density is constant and the thinning is at-
tributed entirely to extrusion. When a = 0, there is no
extrusion (é;5 = 0), and the thinning is due entirely to
densification.

The form of the extrusion term in equation (25) im-
plies anisotropy in the behavior of the layer parallel and
perpendicular to the direction of shearing, that is, ex-
trusion is assumed to occur in the z direction but not in
the z direction. It might be expected that once plastic
strain had been mobilized by application of the shear
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stress oy, the extrusion component of strain might oc-
cur in both z and z directions. Similarly, the form of
the densification term in equation (25) assumes uniaxial
compression across the layer rather than isotropic com-
pression. These assumptions are adopted because they
produce plane strain regardless of the value of a, consis-
tent with the experimental observation that relatively
little gouge is driven out from the layers perpendicular
to the direction of shearing (see Figure 1).

The terms in equation (25) may be combined to give:

—2Ta 1 0
€ij = épy (1) 20Tg (26)

We now separate the strain rate into its isotropic and
deviatoric parts:

. 1, .
€5 = gAéij + fzyDij . (27)
The volumetric strain rate A is given by
A =2T(1 — a)éyy . (28)

The nondimensional tensor D;; describes the geometry
of the deviatoric strain rate:

_2T 13—}-2(1 1 0
Dij = 1 M (2ta) 0 (29)
0 0 _QT(]E.;—G

The nonzero zz component of this tensor arises solely
from the assumption of plane strain during densifica-
tion.

An objective measure ¥ of the shear strain rate in the
z—y plane is defined using a similar form to that used
for the shear stress 7 in equation (15):

. N
: . €yy — €z
72:62y+<yy2x> '

Expanding this expression using equation (26) gives

(30)

Y= Fégy (31)

where
F=+14+T2(14+a)?. (32)
Stress. Our knowledge of the stress tensor is, like

the strain rate tensor, limited to the oy, and o, com-
ponents; we do not have a direct measurement of o,,.
We again adopt the coaxiality assumption of plasticity,
so that the deviatoric stress tensor is coaxial with the
deviatoric strain rate:

Uéj = nyD,'j . (33)
Equations (29) and (33) imply that the ¢, is nonzero
when densification is occurring (a < 1). This arises
from assumptions of coaxiality and plane strain. The zz
component of stress (which is the intermediate principal
stress ¢3) is implicitly assumed to adjust to a value
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between 04, and oyy (or o1 and 03), as necessary to
maintain plane strain.

From equation (29), the zz and yy components of
equation (33) give

Oyy — Ooe = 2T (1 + a)ozy . (34)

We now construct expressions for the mean stress and
shear stress in the z—y plane. The mean stress in the
z—y plane & is again defined by equation (9); using equa-
tion (34), we obtain

=0y —T(1+a)ogy (35)
and, since oy, and & are negative,
|o| = |oyy| + T(1+a)oey . (36)

As before, the shear stress in quantified by the radius
7 of the Mohr circle in the z—y plane. Using equations
(15) and (34), we obtain

T = Fogy (37)
where F' is again given by equation (32).

As in equation (17), the orientation of the princi-
pal stresses can be obtained from equation (35) and
is shown to depend on the rate of densification through
the variable a:

1

t = —
an 20 T o]

(38)

Flow law. At this point there is only one unknown
in the problem: the variable a that determines the rel-
ative amounts of compaction and extrusion. The con-
stant volume theory can be recovered by setting a = 1.
To treat cases where a < 1, some relationship between
the volumetric and shear strain rates must be intro-
duced. The flow law used here is as follows:

A= R(L—sinqﬁ)‘y (39)
o]

where R is a dimensionless flow constant (we later sug-
gest that R is around unity). This flow law has the
property that the volume change vanishes as the Mohr-
Coulomb condition 7/|¢| = sin ¢ is reached. If the vol-
ume strain is negative (densification), 7/|| < sin¢. In
effect, the gouge has a reduced internal friction during
densification. Similar flow laws are used in critical state
soll mechanics [Britto and Gunn, 1987]. The term “crit-
ical state” refers to the final state of constant-density
deformation.

Note that the Mohr-Coulomb failure condition de-
pends on the maximum and minimum principal stresses
(in the z—y plane) but not on the intermediate principal
stress (in the z direction). Consequently, the quantities
7 and & in equation (39) are defined by equations (15)
and (9) in terms of only the 04y, 0yy, and gy com-
ponents of stress. In granular soils the intermediate
principal stress affects the failure strength [Green and
Bishop, 1969; Mandl, 1988]. The coefficient of internal
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friction obtained from plane-strain experiments such as
ours is expected to overestimate the strength of a sam-
ple in triaxial compression.

Substituting from equations (28), (31), (36), and (37)
into the flow law (39), we obtain

9T(1—a)

RF

Fu,

= — sin
1 +T(1 +a)Ha ¢

(40)

where the apparent friction p, is defined by equation
(2). With some rearrangement, the apparent friction is
given by

RFsin¢ + 2T(1 — a)
RF? —T(1 + a)[RFsing +2T(1 —a)] -

Ha = (41)

The apparent friction g, and thinning 7' are the ob-
served, independent variables in this expression. There
are two adjustable material parameters: sin¢ and R.
The quantity F is defined in terms of 7" and a by equa-
tion (32), but the variable a remains independent and
is not directly observed. Below, we show that a can be
estimated by further examination of the data.

In the limit where a = 1, equation (24) for thinning
at constant density is recovered. The flow law constant
R does not appear in this limiting case. The behavior
in this limit may be used to estimate the material pa-
rameter sin ¢ and hence the internal friction p of the
gouge.

With densification included in the analysis, gouge
with a constant internal friction of 1 = 0.88 may display
a wider range of values for apparent friction. At a con-
stant thinning ratio of 7' = —0.1 the apparent friction
ranges between p, = 0.57 when a = 1 (extrusion only)
and p, = 0.47 when R = 1.2 and a = 0 (densification
only). Under the same conditions, the orientation of
the stress tensor changes from § = 39.3° to § = 42.1°
(see equation (38)).

Geometric thinning. Inspection of the layers dur-
ing and after the experiments shows that a band of
gouge of comparable thickness to the layer is left behind
on the larger sample block (see Figure 1). At the lead-
ing edge of the smaller sample block, the gouge neither
extrudes out ahead of the edge nor falls behind to leave
a gap containing no gouge. This observation suggests
a process of “geometric thinning” (GT) in which, when
the layer advances a distance 6X, a volume of gouge
h6X is left behind at the trailing edge of the smaller
sample blocks. A component §hgr of the incremental
thinning of the layer exactly balances this loss:

dh| _ h

h6X = —Léh )y __h
ST 7 IX|ep I

=Ter (42)

where L is the length of the side sample blocks. Equa-
tion (42) links the contribution of extrusion to layer
thinning to the overall dimensions of the layer. The
idea of GT can be exploited to produce an estimate
of the variable a, in cases where the observed thinning
ratio T is larger than Tgr.

First, consider the unique relationship between the
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Figure 6. Decomposition of strain in a sheared layer
that thins by extrusion and densification. The heavier
lines in each diagram show the sample blocks. The ini-
tial shape of the layer, shown in the upper diagram, is
repeated as a dashed outline in the other diagrams for
reference. In this illustration, the thinning of the layer
in the final state is attributed to equal amount of extru-
sion and densification (@ = 0.5). The relative amounts
of shear and extrusion are correctly scaled to reproduce
the condition of “geometric thinning,” in which the ad-
vance of the right-hand edge of the gouge layer matches
the advance of the smaller (upper) sample block. It is
assumed that the local transport of gouge between the
shaded triangles conserves the rectilinear shape of the
layer, particularly at the right-hand edge.

shear and extrusion components of strain illustrated in
Figure 6. The é,; component of strain rate has ad-
justed so that the right-hand edge of the layer advances
with the smaller sample block while the left-hand edge
remains in place on the larger sample block. The re-
quired increment in extensional strain is given by

b€re = é—{ .

7 (43)

Note that the magnitude of €, is independent of rate of
densification, which contributes only to é,, (see equa-
tion (25)).

Second, an expression for é¢,, involving the variables
a and T may be obtained from equations (5) and (26):

TaéX

bepe = —2Tabery = — - (44)
Equating (43) and (44) eliminates 6 X to give
h
=——. 45
¢=—7= (45)

Comparing equations (42) and (45) confirms that when
thinning is due to extrusion alone (a = 1), T' is equal to
Tgr- Equation (45) can be used to estimate a, thereby
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leaving only the material parameters sin¢ and R as
unknowns in equation (41).

Comparision with observations. There is good
quantitative evidence to support the idea that the rate
of extrusion is determined by GT.

1. Figure 2c shows a comparison of Tgr from equa-
tion (42) and the observed thinning ratio during a sin-
gle experiment; the observed rate steadily converges to-
wards Tgr as the shear strain increases.

2. Figure 4b shows the final thinning ratio plotted
against the scaled layer thickness h/L for all the exper-
iments. Two theoretical lines representing equation (45)
are also shown, for a = 1 and @ = 0.4. The linea =1
corresponds to constant gouge density and 7' = Tgr.
With the exception of one very thin layer, the (abso-
lute) thinning ratio is never smaller than Tg7. The one
exception is a very thin layer between sample blocks of
significant roughness, which makes a precise definition
of the layer thickness problematic.

By using the the additional constraint provided by
GT, the observations of apparent friction can be used
to estimate the material parameter R. In Figure 4a,
equation (41) is plotted for a = 0, 0.4, and 1. A value
of sin ¢ = 0.66 was selected to fit the upper edge of the
data in the region of small 7. In Figure 4b, most of
the data fall in the range 0.4 < a < 1; noting this, a
value of R = 1.2 has been selected so that the data in
Figure 4a at large 7" fall between the lines for a = 1 and
a = 0.4. A more rigorous fitting of these parameters
is not warranted at present. We suggest that sin ¢ is
correct to £5% and R is correct to +25%.

The experiments using coarse gouge are conspicuous
in showing generally lower apparent friction and higher
rates of thinning than the experiments using finer gouge
or fractal gouge. This is consistent with the analysis
presented, because the coarse gouge is expected to den-
sify significantly as the large grains break down into
smaller particles with a range of sizes that pack to-
gether more efficiently [e.g., Wong, 1990]. Quantitative
estimates of the volumetric strain are given in the next
section.

Further validation of the theory can be found by ex-
amining an individual experiment in greater detail. Fig-
ure 7 shows results from the experiment introduced in
Figure 2, replotted on a diagram similar to Figure 4.
These results match theoretical curves for a layer of
constant thickness in which the variable a steadily in-
creases towards 1. This increase reflects a change from
thinning dominated by densification early in the exper-
iment to thinning dominated by extrusion late in the
experiment. The results in Figure 7 suggest that the
flow law is adequate even for the early part of the ex-
periment, where p, is quite small and the rate of layer
thinning is quite large.

Volumetric strain. The assertion that the rate of
extrusion is determined by GT also provides a way to
estimate the volumetric strain (or densification) of the
gouge. An increment in the yy component of strain
can be divided into two contributions due to (1) den-
sification and (2) extrusion at the rate determined by
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Figure 7. Results from experiment ul6 (see Figure 2), replotted with the same layout as Figure
4. In both parts, the bold dashed line shows the progression of the rate of thinning in a single
experiment from an initially high value to a lower, stable level. The arrows indicate the direction
of progression, and the open circles show the actual data points at increments of 0.5 mm in shear
displacement. The apparent friction in Figure 7a increases substantially during the experiment,
and the layer thickness in Figure 7b decreases a little. The solid triangular symbols show the
points that are plotted in Figure 4. The theoretical lines shown include the predictions for
thinning due to extrusion only and densification only (¢ = 0 and a = 1), as in Figure 4. Also
shown are lines for a layer of constant thickness (h/L = 0.04). Along these lines the rate of
thinning varies from a large value, when densification is active, down to a smaller value, when
the density is constant and only extrusion is active.

GT. In plane strain, the latter contribution is equal and
opposite to §e;5. From equation (43),

_X

GT _
&yy - L

(46)
Because any densification is attributed to uniaxial com-
pression of the layer, the increment in volumetric strain
A can be obtained from the difference between the total
increment in thinning and that attributed to extrusion.

§A = beyy — 8eCT (47)

€yy

Using equations (4) and (46),

§h 86X
6A_—h—+—L—. (48)

By integrating from an initial condition where h = hg
and X = 0, the finite volumetric strain is given by

A:—ln{h—g{—)}+%. (49)

The volumetric strain A can be used to relate the initial
and final porosities (fo and f) of the gouge:

f=1-(1~fo)exp(-4). (50)

Figure 2d shows the progression of volumetric strain in
a single experiment, calculated using equation (49) but
plotted as a function of shear strain. Note that the
volumetric strain rate is initially large but diminishes
as the thinning ratio in Figure 2¢ approaches GT.

Using equation (50), the final volumetric strain A =
—0.16 shown in Figure 2d might correspond to a reduc-
tion in porosity from fy = 0.35 to f = 0.24. These
values are reasonable but were not measured. It should
be noted that by setting f = 0 in equation (50) we
obtain a limit on the volumetric strain:

Amin =In(1— fo) . (51)

This equation sets a lower limit of around —0.4 on A if
the initial porosity is in the range fo = 0.3-0.35.

The calculated progression of volumetric strain is
shown for all the experiments in Figure 8. We can
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Figure 8. Estimates of volume strain from all the experiments. Each line is calculated using
equation (49) and shows the progressive volumetric strain for a single experiment (see also Figure
2d). Data from experiments using a range of layer thickness are shown together by using the
shear strain on the horizontal axis; lines for the thickest layers terminate at a shear strain of
about 1, whereas those for the thinnest layers run out to strains in excess of 5. The light lines
show data for the ultrafine gouge and typically show very little volume strain. The dashed lines
show data for the medium, fractal, and Lopez gouge types and typically show a total volume
strain of around —0.1. The heavy lines show data for the coarse gouge and show larger total
volume strains. The estimates of volume strain for coarse gouge in thin layers may be unreliable

(see text).

account for the trends shown by associating the pro-
cess of densification with the evolution of the grain
size distribution by fragmentation. Biegel et al. [1989]
and Marone and Scholz [1989] demonstrated that gouge
with a narrow range of grain sizes quickly develops a
broad, power law grain size distribution by fragmenta-
tion when sheared. The fractal gouge is denser because
the grains pack together more efficiently.

With one exception, the experiments using ultrafine
gouge show minimal volumetric strain. This gouge has
very small grains and also a reasonably large range in
grain size. Many of the grains may be too small (1 gm)
to fragment at the stress levels used in these experi-
ments.

The experiments using coarse gouge show large amount
of volume strain, passing well beyond our estimated
limit of A = —0.4 in some cases. This gouge has a
grain size of nearly 1 mm and is observed to undergo a
great deal of grain fragmentation during experiments.
The two cases showing the largest volume strains are
layers whose initial thickness was about one grain di-
ameter, between grooved steel sample blocks. In these
cases, the inital porosity is probably anomalously large,
so that more densification is permissible. Also, with
such thin layers, loss of small grains into the grooves of
the rough steel sample blocks probably causes a signif-
icant amount of anomalous thinning.

In the experiments with medium, fractal, and natural
Lopez gouges, the volumetric strain lies between the
extremes set by the ultrafine and coarse gouges.

Discussion

Regardless of the details of the discussion that fol-
lows, it should be emphasized that mechanical proper-
ties of gouge layers or fault zones are more complicated
than those of bare rock surfaces. The gouge in fault
zones is distinct from the surrounding country rock and
should be treated as a finite continuum. It is misleading
to parameterize the material properties of a finite fault
zone 1n terms of the conventional coefficient of friction,
which is basically a surface property.

Internal Friction and Apparent Friction

It is evident from our results that a clear distinction
must be made between the internal friction p of gouge,
a material property, and the apparent friction p, of
a gouge layer, a property of the entire system. The
internal friction is more familiar and is the foundation
of a quantitative predictive framework, but it is the
apparent friction that is usually measured and that has
real external significance.

We certainly concur with the view presented by Hobbs
et al. [1990] and Byerlee and Savage [1992] that the
maximum apparent friction of a gouge layer or a fault
zone 1s the sine of the angle of friction rather than its
tangent. The apparent friction may, however, be sig-
nificantly less than this upper limit. Previous measure-
ments of the frictional strength of gouge layers therefore
represent lower bounds on sin ¢ rather than direct mea-
surements of tan ¢.
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The apparent friction of a gouge layer in the labora-
tory is not uniquely determined by the internal friction.
Our analysis of the relationship between the measured
apparent friction and the inferred internal friction calls
for additional information, namely, the rates of extru-
sion and densification of the gouge layer. Neither of
these are directly observed in the double-direct-shear
experiments, but both can be inferred from measure-
ments of shear strain and layer thinning.

The interpretation of experiments of fault gouge in
any experimental geometry should be conducted with
these concepts in mind. They certainly apply to other
double-direct-shear experiments and also to triaxial saw-
cut and rotary shear experiments.

The effect of densification. It wasis not possible
to monitor the gouge density in the double-direct-shear
apparatus used in this study; hence we have had to
estimate the volumetric strain rate indirectly by using
the concept of geometric thinning. For medium, fractal,
and Lopez gouge, densification is inferred to be impor-
tant during the initial stage of an experiment, up to
a shear strain of about 0.3 (see Figures 2 and 8). For
coarse gouge, densification is most rapid during this ini-
tial stage but may persist for somewhat longer.

In triaxial sawcut experiments the pore volume, and
hence gouge densification, can be measured directly.
Such measurements are presented by Marone and Scholz
[1989] and Marone et al. [1990] and are used here to
confirm qualitatively the validity of our assertions about
gouge densification. The gouge used in those studies
was equivalent to our coarse gouge, and most of their
experiments used normal stresses of 100 MPa, signifi-
cantly greater than the normal stress of 25 MPa used
here.

They always observed significant porosity reduction
up to shear strains of around 0.3 (note also that they
use the engineering definition of shear strain; their val-
ues are halved to be consistent with the definition used
here). A rough inspection of their data during these
initial stages suggests that our value of around unity
for the flow constant R, which controls the rate of den-
sification with respect to shear strain in equation (39),
is consistent with their data.

After this initial stage, porosity reduction is suc-
ceeded by dilation in their experiments at 100 MPa.
This is inconsistent with our results for coarse gouge,
where densification continues to larger shear strains.
However, Marone and Scholz [1989] performed a sin-
gle experiment at 20 MPa normal stress, which showed
continuing porosity reduction out to shear strains in ex-
cess of unity; this result is consistent with our inferences
about the densification of coarse gouge. Comparing the
results at 100 MPa and 20-25 MPa, it appears that
full densification of coarse gouge is accomplished with
less shear strain as the normal stress increases, because
grain fragmentation is more efficient.

The effects of extrusion and layer thickness.
Even after the gouge has attained a constant density,
the apparent friction continues to be affected by the
process of extrusion. This effect can be misinterpreted

7243

as simply being due to layer thickness, whereas the im-
portant variable is the ratio of layer thickness to length.
Refering to Figure 4, extrusion has a significant effect
on the apparent friction of layers whose thickness ex-
ceeds perhaps one-twentieth of their length (a thinning
ratio of —0.05).

Dueterich [1981)] and Biegel et al. [1989] report a de-
crease 1n the apparent friction of gouge layers with in-
creasing layer thickness in double-direct-shear experi-
ments. Their observations are in qualitative agreement
with those presented here. Our analysis indicates, how-
ever, that layer thickness is not the key variable; it is the
rate of change of thickness with shear displacement that
is quantitively related to the apparent friction. Only be-
cause thicker layers thin more rapidly is a correlation
between layer thickness and apparent friction observed.

It is more difficult to monitor changes in the layer
thickness precisely in triaxial sawcut experiments, be-
cause the sawcut cylinder is jacketed to isolate it from
the fluid confining medium. However, as in our double-
direct-shear results, the initial thickness of the gouge
layer should provide an indication of the rate of thinning
during the experiment. Shimamoto and Logan [1981] re-
port the apparent friction of dolomite gouge layers with
initial thicknesses of 0.5-2 mm. The normal stress and
sample size (equivalent to to the layer dimension L here)
were also varied. They find no significant variation in
the apparent friction with layer thickness in these exper-
iments. Their result is surprising in light of this study
but may reflect a difference in the behavior of quartz
and dolomite gouge. Alternatively, it may be that in
the confined triaxial apparatus, the gouge layer has less
tendency to extrude; layer thinning by extrusion is per-
haps a peculiarity of the double-direct-shear geometry,
wherein the edges of the gouge layers are unconfined.

Summers and Byerlee [1977] report triaxial sawcut
experiments on layers with a range of different mineral
compositions. In most of these experiments the layer
was not granular gouge but instead an intact wafer of
material sandwiched between granite sample blocks. It
is not clear whether our analysis applies to such ex-
periments, because the strain may not be distributed
throughout the gouge layer.

In rotary shear experiments, extrusion in the sense
we have described is impossible; gouge cannot escape
from an annular layer in the circumferential direction of
shearing. Radial extrusion can also be prevented by cor-
rectly choosing the radial confining pressure (T. Tullis,
personal communication, 1992). Hence the apparent
friction should be affected by only the initial process of
densification. We discuss this further in the following
section.

Strain Localization in Gouge Layers

The presence of a gouge layer leads to strain local-
ization in a general sense, because the solid material to
either side does not deform plastically. Localization of
the strain within gouge layers and natural fault zones
has been discussed by many authors [e.g., Tchalenko,
1970; Mandl et al., 1977; Byerlee et al., 1978; Logan et
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al., 1979; Groshong, 1988; Marone and Scholz, 1989).
Oblique Riedel shears are usually described, and their
interpretation as Coulomb failure planes is well estab-
lished. Layer-parallel shears, termed Y-shears by Lo-
gan et al. [1979], are also often described. A recent,
detailed study by Gu and Wong [1994] provides quan-
titative documentation of the sequential appearance of
Riedel and Y-shears in triaxial sawcut experiments on
fine-grained gouge. The significance of both types of
slip plane is discussed here.

Riedel shears. The observation of continuing layer
thinning in our experiments has important implications
for the process of shear localization. In the latter part
of the experiments, the layer thinning is due to extru-
sion at constant density. This requires that strain be
distributed both along and across the entire layer.

Displacements on a population of conjugate Riedel
shears can produce the required strain field and satisfy
the Mohr-Coulomb failure condition. However, because
the Riedel shears are oblique to the layer, any single
shear plane can accommodate only a displacement that
is a small fraction of the layer thickness. The plane
must then be abandoned and a new plane activated.

For this reason, we argue that localization is inhib-
ited in these experiments. In gouge, like other granular
materials such as sandy soil, shear strain spontaneously
localizes into shear bands. However, the kinematic con-
straints imposed on gouge in a sheared layer are such
that localization cannot persist in one place for very
long.

Layer-parallel Y shears. The preceding argument
leads to a paradox when we acknowledge that Y-shears
are also observed in gouge layers. While Riedel shears
are the first evidence of localization, Y-shears emerge as
the shear strain becomes large. This is most obvious in
rotary shear experiments [e.g., Mandl et al., 1977; Blan-
peid et al., 1988] but has also been observed in double-
direct-shear and triaxial sawcut experiments with rel-
atively large shear displacements. Y-shears sometimes
form close to the boundary betwen the gouge and the
solid wall but are often in the middle of the gouge layer.

It appears to make sense that a single Y-shear should
form in a sheared layer, as it can accommodate indefi-
nite amounts of shear strain. A Y-shear is not, however,
optimally oriented for the stress field inferred here and
observed by Mandl et al. [1977]. If the applied shear
stress is sufficient to drive slip on a Y-shear, the opti-
mally oriented Riedel shears should be well past failure,
if the same coefficient of internal friction is used.

One of the assumptions made in the present analysis
must break down when Y-shears develop. Their devel-
opment may be involved with the development of het-
erogeneity within the gouge layer, as suggested by the
transition in frictional behavior observed by Marone et
al. [1992]. This heterogeneity might be in the stress
field, but it is perhaps more likely that the material
properties become heterogeneous. For example, a sub-
layer of finer-grained gouge might form, which for some
reason has a lower internal friction than does the rest
of the gouge. These explanations are far from precise,
and the formation of Y-shears invites further study.
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The Rate Dependence of Apparent Friction

The success of our analysis of apparent friction invites
a brief discussion of its implications for the more subtle
issue of frictional stability.

Rate- and state-dependent friction laws [Dieterich,
1981; Ruina, 1983] are the accepted framework for
quantifying frictional stability, although for the most
part these laws are phenomenological. For bare sur-
faces, a reasonably precise micromechanical justification
for the phenomology has been proposed, on the basis of
the evolution of the population of asperities that pro-
vide the real contact between surfaces. Observations
of asperities between sliding lucite blocks provide di-
rect evidence of these micromechanical processes [Kil-
gore and Dieterich, 1992].

The micromechanics of rate dependence in the appar-
ent friction of a gouge layer is presumably more com-
plicated. The strain in a granular gouge layer may be
accommodated by grain fragmentation and rotation as
well as slip on intergranular asperities.

Experimental observations of gouge layers show that
the rate dependence of friction and the critical displace-
ment over which rate dependence evolves change with
shear strain [e.g., Biegel et al., 1989; Marone et al.,
1992]. This presumably reflects a change in the balance
of mechanisms that accommodate strain. Our results
provide an indicator of these same mechanisms. For ex-
ample, when the rate of densification is high, grain frag-
mentation (a rate-strengthening process) is certainly
very active. As the rate of densification decreases, we
might expect to move toward rate-weakening behavior.

The evolution of strain localization discussed above
probably affects the charateristic displacement. If ex-
trusion is occurring, strain must be distributed through-
out the layer, whereas if a Y-shear forms, then strain is
localized within the layer; this transition probably leads
to a reduction in the critical displacement.

The Strength of Natural Fault Zones

Extrapolating from carefully controlled laboratory
conditions to natural fault zones is necessarily specu-
lative. The mechanical processes we have analyzed are,
however, sufficiently simple and general that there is
no reason not to expect similar conditions to give rise
to similar results on geological scales. We must there-
fore discuss the likelihood that anything resembling our
experimental conditions might arise in nature.

A motivation for such a discussion is the apparent
weakness of major crustal fault zones (see Hickman
[1991] for a review). Observations of the heat flow and
stress orientation associated with the San Andreas fault
in California suggest that the frictional strength of this
mature, active fault is low both in an absolute sense and
relative to other faults in the immediate vicinity. These
observations are most easily reconciled if the apparent
friction of the fault zone is reduced to around 0.1.

While the results reported here do not offer values
of apparent friction as low as 0.1, it is worth consider-
ing how large an effect the processes of extrusion and
densification might have in nature.
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Extrusion. To obtain an apparent friction of 0.1
for a layer of quartz gouge at constant density would
require a thinning ratio of around -2. It seems very un-
likely that such a value would arise, or even less persist,
in nature.

Furthermore, to appeal to any effect of extrusion in a
natural fault zone requires an explanation of the fate of
the extruded gouge. The fault zone presumably forms
a closed system, so layer thinning in one place must
be balanced by layer thickening nearby. The appar-
ent friction of a thickening layer can be obtained us-
ing the same analysis (e.g., equation (24)) with positive
values of the thinning ratio 7. For values of T' less
than about 0.2, a thickening layer strengthens with T'
at about the same rate that a thinning layer weakens.
Therefore a closed fault zone containing complementary
thinning and thickening regions would have an average
apparent friction of around sin¢. This value is 0.66 in
the experiments presented here, far in excess of the low
apparent friction suggested by the heat flow and stress
orientation around “weak” faults.

There is also some possibility of lateral extrusion in a
fault zone. We have not analyzed the mechanical con-
sequences of such behavior in detail. If the gouge could
somehow escape, perhaps through upward extrusion to
the surface, layer thinning would occur without com-
plementary layer thickening, and the fault zone would
be weakened.

Densification.
not sustainable in a uniform fault zone experiencing
continuing displacement. It may, however, feature in
the mechanics of a fault zone that is continuing to widen
with time, incorporating more gouge by fragmentation
of the surrounding country rocks. It is conceivable that
the extremely low values of apparent friction seen in
the early parts of our experiments (see Figure 7) might
apply in such circumstances. It would be possible to
develop the present analysis to describe such circum-
stances, with the introduction of additional constitu-
tive assumptions for the rate of widening of the fault
zone and the initial density of new gouge. The analy-
sis should then, however, include the effects of dilation
in the country rocks that would accompany fragmenta-
tion. By analogy with the preceding discussion of extru-
sion, complementary thinning due to densification and
thickening due to dilatant fragmentation would proba-
bly cancel each other out.

Conclusions

1. Layer thinning observed in double-direct-shear ex-
periments on granular quartz gouge can be attributed to
extrusion and densification of the gouge layer. Thicker
layers generally display more thinning and lower appar-
ent friction.

2. In analyzing the process of extrusion, the observed
strain can be used to estimate the orientation of the
stress tensor and hence relate the apparent friction of
the layer to the internal friction of the gouge. The as-
sumptions of plane strain and of coaxiality of deviatoric
stress and plastic strain rate are made in this analysis.

The densification effect is also clearl:
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Allowing only for extrusion, a constant value of inter-
nal friction (tan¢ = 0.88) that fits experiments with
less thinning systematically overpredicts the apparent
friction for experiments with more thinning.

3. Extending the analysis to include thinning due to
densification can reduce the predicted apparent friction
(for the same value of internal friction) and improve the
fit to the observations, particularly for coarse gouge in
which considerable fragmentation occurs. This analysis
introduces one additional material parameter, in the
form of the constant R in a flow law relating volumetric
strain to shear strain and the state of stress.

4. The rate of thinning due to extrusion is probably
controlled by the ratio of layer thickness to the overall
layer length (“geometric thinning”). This effect may be
peculiar to the double-direct-shear experimental config-
uration.

5. While is unlikely that the processes observed and
analyzed here are directly applicable to natural fault
zones, the mechanical analysis described here is quite
general and should apply to experiments on gouge in
other experimental configurations.
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