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Abstract. Data on synthetic fault gouge previously collected by Richardson and Marone
[1999] were compared with the predictions of a unified theory for rate- and state-dependent
friction compiled by Sleep [1997]. The theory treats the gouge as a continuum one-dimensional
fluid sheared between parallel plates. It is predicted that the strain rate localized into a shear
band of width called W, during steady state sliding from the nominal width of the gouge zone
W oom- The critical displacement during velocity stepping tests is predicted to be Wi, €., where
€;¢ 18 the critical strain, an intrinsic material property. It is predicted that the strain rate for
renewed sliding after holds delocalizes to a width W, which is greater than W, and for long

holds approaches the full gouge zone width W ... The displacement for recovery of the shear
traction to its steady state value is predicted to be W €., which for long holds is much
greater than the critical displacement obtained by velocity stepping. Only the macroscopic
effects of this process could be studied using the laboratory data in hand. Compaction during
the hold and the difference between peak shear traction upon restart and the steady state shear
traction during sliding (healing) were measured. To simulate more complex normal traction
variations on real faults, the normal traction was varied sinusoidally about its previous value
during some holds. The theory reasonably predicts the observed relationship between healing
and compaction and healing versus hold time. It predicts the slip needed for recovery of shear
traction following holds but poorly predicts the shear traction versus time during recovery. We
attribute this failure to the fact that the laboratory gouge is a heterogeneous three-dimensional
substance. Qualitatively, the delocalized width W, varies with position within the gouge
plane, and slip is required for localized shear to organize in three dimensions. As strain rate
was not observed as a function or time and position within the gouge, other explanations for
“the observed long recovery times following holds remain viable, including consolidation

strengthening.

1. Introduction

Experiments on synthetic fault gouge usually measure defor-
mation of thick layers of weak material sandwiched between
two or more rigid planar surfaces. Examination of the deformed
gouge after an experiment often reveals that strain has localized
into a narrow zone within the gouge. Such strain localization
affects the frictional properties of the gouge and complicates
determination of grain-scale laboratory properties in addition to
raising a potential complication in predicting the behavior of
gouge within real fault zones.

In this paper, we examine the effect of strain localization on
the experimental results of Richardson and Marone [1999]. The
aftermath of strain localization is evident upon examination of
gouge after sliding (Figure 1). The synthetic zone is compli-
cated with oblique (Riedel) shear and intact augen. High-strain
shear bands are recognized mainly by the comminution of grains
which is an irreversible process on the laboratory time scale.
That is, the fine-grain shear bands persist even if the sample is
held at rest for a long time after sliding stops.
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The Richardson and Marone [1999] experiments included
velocity stepping at constant normal traction, normal traction
fluctuations at constant velocity, and normal traction fluctuations
during holds. These fluctuations represent special cases of more
complicated situations which are expected to occur in Earth.
That is, real fault zones experience velocity and normal traction
changes during preseismic creep and rupture and normal and
shear traction changes from seismic waves and static displace-
ments related to fault movements elsewhere while at rest.

A self-consistent set of relationships which represent the
behavior of fault gouge is more useful to earthquake dynamics
than a set of epicyclic laws which purport to represent several
special cases. Ideally, the theory should be obtainable from
considerations of atomistic deformation and equivalent material
theory for the lattice of the grains in the gouge. In this paper,
we do not attempt a theory with this level of sophistication, but
rather we treat the fault gouge as a continuum fluid which in the
laboratory is deformed between two rigid plates. We apply the
unified rate and state friction theory of Sleep [1997], which
explicitly includes strain rate localization and normal traction
changes. This theory is partly grounded on atomistic and lattice
considerations and partly compiled to unify previous empirical
relationships. We do not consider alternative theories in detail
because none have yet been formulated in enough detail to
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Figure 1. (left) Photomicrograph of a gouge layer showing shear localization and microstructures. B represents
boundary shear, R represents Riedel shear, and A denotes an inactive region. Note intense particle size reduc-
tion within shear bands. The bright grains are iron oxide present in the starting material. The black open cracks
on the left and the ragged edge on the right are effects of sample handling after sliding had finished. (right)
Idealized gouge layer of width W ;. In our simple model, strain rate is localized on a Y or B shear of thickness

w.

explicitly represent strain rate localization. We show where the
theory by Sleep [1997] explains experimental observations and
where it needs improvement. We use these results to suggest
additional laboratory experiments as well as modifications in
existing experimental procedures. We make new calculations
based on the theory but do not modify it.

2. One-Dimensional Strain Rate Theory

The experimental gouge in Figure 1 is obviously quite com-
plicated. A fully three-dimensional model with tensor stress and
strain rate as well as slightly deformable confining walls could
be used to represent it. Tensor rate and state friction is dis-
cussed by Sleep [1998], and deformation associated with the
extrusion of laboratory gouge from the contact area is discussed
by Sleep [1999a]. We take the simpler approach of representing

the experimental gouge as one-dimensional flow between two
rigid parallel plates. The intrinsic properties of the gouge are
assumed to be independent of position within the gouge and of
time (or equivalently displacement). Extrinsic properties (for
example, strain rate) are assumed to be functions only of the
distance x measured perpendicular to the plane of the gouge
(Figure 2). This dependence is made explicit in all equations
which represent a continuum. One advantage of a one-
dimensional model is that simple relationships are not obscured
by a complex model.

A second advantage relates to what was actually measured in
the Richardson and Marone [1999] experiments. The measured
shear traction T and change in gouge layer thickness were
macroscopic averages over the contact area of the wall bounding
the gouge. The macroscopic variables velocity V and normal
traction P (AP in the work of Sleep [1997]) were controlled.
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Figure 2. (left) Velocity of a point within the gouge which depends on the position x relative to the center of a
high-strain rate zone. Bottom of the gouge zone is sliding to the right. The strain rate can in principle be meas-

ured from the derivative of velocity with respect to x.

(left middle) Implications of our continuum model for

strain rate localization shown schematically. Functions of the distance x into the gouge zone are plotted. The
weighting function w has scale width & which is less than the scale width c; of the strain rate function. (right
middle) Steady state logarithm of the state variable as a parabola. However, the larger values outside of the
high strain rate zone cannot be reached during the finite time of the experiment. Rather the state variable out-
side the high strain zone is o, which increases linearly with time. (right) Shear band represented as a zone of
uniform strain rate of width W within a gouge zone of width W, in the simple model of strain rate localiza-

tion.

The one-dimensional treatment assumes that shear traction and
normal traction are everywhere their macroscopic values. This
precludes studying normal traction and gouge pressure variation
associated with extrusion of gouge from the fault zone. We
represent strain rate within the gouge as simple shear which is
spatially uniform within the fault plane, that is, ideal Y shears.
This precludes consideration of oblique (Riedel) shears as are
often observed in laboratory gouge [Marone et al, 1992; Gu
and Wong, 1994; Scott et al., 1994; Nakatani, 1998; Mair and
Marone, 1999] and are shown in Figure 1. We return to com-
plications arising from the three-dimensional geometry of the
real gouge in sections 3 and 4.

As we wish to model transient changes in friction, we use the
strain rate and its localization as kinematic parameters rather
than strain. In principle, the strain rate could be measured from
the dependence of sliding velocity on position within the fault
zone (Figure 2). The strain is measured on a sample after an
experiment as in Figure 1.

We alternate between two ways of representing strain rate
localization. First, we assume that strain rate is localized within
a thickness W of a gouge zone of nominal width W, (Figure
1). This allows for quick estimation of effects of mature strain
rate localization. To study the time-dependent evolution of
strain rate localization, we apply a continuum theory previously
developed by Sleep [1997], which we summarize below.

2.1. Rate and State Friction

Richardson and Marone [1999] interpreted their results in
terms of rate and state friction where the strength of the faults
depends both on the current rate of slip and on the previous slip
history. Because we wish to consider strain rate localization,
we follow the notation of Sleep [1997], which uses strain and
strain rate rather than the macroscopic variables: displacement
and velocity. The more traditional macroscopic approach used
by Richardson and Marone [1999] is recovered when strain rate

and strain are assumed to be spatially uniform across the gouge
zone.

2.1.1. Macroscopic and local variables. We show both the
traditional macroscopic formula and the equivalent local formula
for friction and evolution using the notation of Sleep [1997]
with minor modifications. In terms of macroscopic variables the
shear traction is given by

T=PUo + aln(V/Vy) + bIn(W/Wnom)] (1a)

where i is the steady state coefficient of friction, V is the slid-
ing velocity, Vj is a reference velocity, and a and b are small
dimensionless constants. The parameter Woom (Wo in the work
of Sleep [1997]) is a normalizing value of the state variable
which (as discussed below) represents the effects of sudden
changes in normal traction [Linker and Dieterich, 1992] on fric-
tion. In terms of the strain rate the friction equation is then

T=P [”’0 +a 11’1(8()6 )/80) + bln(W(x )/Wuorm)] s

where strain rate (when it is spatially uniform) is &€ = V/W,,
and the reference strain rate € is Vo/Woom, Where Wy, is the
nominal width of the gouge zone.

To represent time-dependent behavior of real and simulated
fault zones, it is necessary to explicitly relate the state variable
vy to slip history. A variety of equations have been used to do
this. We use an interpretation of the "slowness" equation (also
referred to as Dieterich’s law) in terms of porosity and material
properties compiled by Sleep [1997]. The evolution equation
for the state variable in normalized form using macroscopic
variables at isothermal conditions is

dy _ VP v
o D P D,

(Ib)

, (2a)

where ¢ is time, P, is a reference normal traction, and o is a
dimensionless parameter obtained from experiments where the
normal traction is suddenly changed as a controlled variable
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[Linker and Dieterich, 1992] (/b is N in the work of Sleep
[1998] and n in the work of Sleep [1997]). In terms of strains
and strain rates the evolution equation is

oy(x) _ Ex)P ob _WER)

= s 2b
ot Einc 6 €int (2b)

where the critical strain to significantly modify the state variable
is defined in terms of macroscopic variables as
D,
Wnom

Eine = ’ (3)
where D, is the critical displacement in the case that no strain
localization is present. The critical displacement is the amount
of slip for renewal of contact junctions between solid surfaces,
and equation (3) has been demonstrated experimentally for
gouge [Marone and Kilgore, 1993]. Here the critical strain is
considered to be an intrinsic local material property (which by
assumption is not a function of position), while the measured
value of the critical displacement &, W ., when no strain locali-
zation occurs depends on the gouge thickness W, .. (The nota-
tion has been modified to g, from ¢, of Sleep [1997] to
highlight the intrinsic nature of this parameter.) The local evolu-
tion equation (2b) and the local friction equation (1b) reduce to
their macroscopic forms (2a) and (1a) when the strain rate is
spatially invariant throughout the gouge.

2.1.2. Normal traction changes. The normalizing parame-
ter Wyom i (1) and the parameter o in (2) are obtained (respec-
tively) by considering the dependence of steady state and tran-
sient friction on normal traction following Sleep [1997]. To do
this, we note that the observed friction in (1) depends on the
ratio YW/ Yom- Thus we are free to consistently normalize y and
Yoo fOr our convenience. The normalization in (2b) is selected
to have the property that y =1 for steady state sliding at the
reference strain rate, € = &, and the effective normal traction,
P = P, In general, the steady state value of y in (2b) is

B Pa/bé()

P§Pe

Wiy C))

The parameter .., is obtained in terms of physical quantities

by assuming that the steady state value of coefficient of friction

/P is independent of P. That is, Wy /Woom = £¢/€, Which yields
P(X/b

Whorm = EJ (5)

[Sleep, 1997]. The parameter a is obtained experimentally by
measuring the shear traction after a sudden change in normal
traction from steady state sliding at P4 to P ,. The state vari-
able then has no time to evolve from its previous steady state
value in (4) of P&P&y/P§®&. The normalizing parameter Woom
in (5) instantaneously changes to P2 /P§. The coefficient of
friction T/p in (1b) then instantaneously changes by an amount
of o In(P4/Ppew). The combination of the macroscopic shear
traction equation (la), the macroscopic evolution equation (2a),
and the reference state variable equation (5) yields predictions
which are mathematically identical to those of the formulation
of Linker and Dieterich [1992]. Their formulation has the state
variable change suddenly when normal traction changes, while
our formulation has .., change suddenly.

2.2. Simple Strain Rate Localization Model

We first consider the effects of mature strain rate localization
on velocity stepping, normal traction stepping, and slide-hold
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tests as done by Richardson and Marone [1999]. To obtain
closed-form results, strain rate is (by assumption) uniform
within a shear band of thickness W in a gouge layer of nominal
thickness W,m and zero outside this zone (Figure 1). The nom-
inal strain rate €poy is thus V/W, .., while the actual strain rate

Sar 18 VIW.
To model this strain rate localization, we express (1b) as a
local flow law
. bla . IJ,OP
. . norm -
ex)=¢ . 6
) O[W(X) eXP[ P } ©

Equation (6) explicitly allows the strain rate and the state vari-
able to be functions of position x across the fault plane. The
macroscopic velocity V is obtained by integrating € across the
fault plane. We consider the effects of this simple strain rate
localization model on some idealized experiments which are
commonly conducted in the laboratory,

2.2.1. Velocity stepping experiment. In a velocity stepping
experiment the gouge zone is brought to steady state at velocity
Voa and then the velocity is suddenly changed to velocity Vey.

. Letting the normal traction be the reference P = P, the actual

value of y within the shear band at steady state from (4) is

€0 Wey
Yold = = . (7)
Eold Vo
When the velocity is changed, the new strain rate is

€rew = View/W. The instantaneous change in shear traction from
(1b) is

At=Pla ]n(énew/éold)] =Pla ln( Vnew/vold)] B (8)

which is independent of strain localization. Similarly, the value
of y after the fault goes to steady state is
€ Weo

Ynew = T = . 9

Enew Vnew

This implies that the steady state change in shear traction is

At = P[(a = b)In(Esew/€ad)] = P[(@ =D)n(View/ V)], (10)

which is again independent of strain rate localization. That is,
the measured values of a and b are not affected by strain rate
localization. This result is true only if the width (here
represented by W) of the high-strain rate zone remains
unchanged during the experiment.

In an actual velocity stepping experiment the shear traction
following the velocity step is measured as a function of time
and displacement. By solving the macroscopic evolution equa-
tion (2a) with V constant, the state variable exponentially
approaches its steady state value over a time D./V or a distance
D,. The apparent value of the critical displacement obtained by
measuring the scale distance for this exponential decay is
affected by strain localization [Marone and Kilgore, 1993]. The
time for slip of the critical strain &, to occur at the velocity
Vnew is
o o Wein

= 11
Vnew ( )

Enew
where the result applies in general as the time for the state vari-
able to approach steady state at a new strain rate. During this
time the gouge slides a distance equal to the apparent value of
the critical displacement

WD,
Dapp =tVoew = Wejpe = ——

nom

(12a)
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which is less than the value without strain localization by a fac-
tor of W/W,on. Equivalently, the apparent value of the critical
strain is

€app = Weim/Wnom . (12b)

The key point of (12a) and (12b) is that D, scales with strain
localization width, and the micromechanical connection between
D,y and the critical distance for particle-particle or asperity
contacts [e.g., Dieterich and Kilgore, 1994] is made by sum-
ming the contribution of interparticle contacts within the shear
band.

2.2.2. Dilatancy associated with velocity stepping. The
change in porosity after a step increase in velocity may be
measured with a fluid volume technique [Marone and Scholz,
1989; Marone et al., 1990] or by recording how far the walls of
the gouge zone move apart [Marone et al., 1990; Marone and
Kilgore, 1993]. The results of such experiments were inter-
preted by Segall and Rice [1995] and by Beeler and Tullis

[1997]. The Beeler and Tullis [1997] interpretation involves the -

effect of the energy that dilates the fault zone on macroscopic
friction. As we do not have a useful way to extend it for our

present purpose, we follow Segall and Rice [1995]. They
expressed the state variable as a function of porosity
o-f =Cdn(y) , (13)

where ¢ is a reference porosity at which y is 1, f is porosity,
and C. is an empirical dimensionless constant.

The coefficient C. can be measured using the change in
steady state porosity before and after the velocity step. The ini-
tial porosity, from (13) and (7), is

We,
fold = ¢—CE]D v , (14)
old
and the new porosity in the shear band, from (9), is
Wi
fnew = ¢_C€1n 80 (15)
new
The difference is
Vnew
Af =C¢In , (16)
Vou

which is independent of strain localization.

In double-direct shear experiments, such as those conducted
by Richardson and Marone [1999], dilatation is in practice
measured by the changes in the macroscopic distance between
the walls of the fault zone. When the strain rate is localized,
this change is WAf (assuming that no deformation occurs out-
side the shear zone). The apparent value of C. is obtained,
however, by assuming that dilatation occurred uniformly
throughout the nominal width of the gouge zone Wy, The
apparent dilation parameter. from (16), is then

WAf
w wC
Capp = e = = a7
" Vnew W“f’m
In|——
Vol

From (12b) and (17) we find the ratio

Ce
== (18)
Eint

c app
EaPP

is independent of strain localization. The physical significance
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of this ratio is seen by combining (2b) and (13) to obtain an
evolution equation for porosity

@) _ dye) I () _ Ceblx)  CeboP™
o o owk)  Em W@ELPE

where the first term represents frictional dilatancy and the
second represents ductile compaction. The physical significance
of the ratio C,/g;, in (18) is obtained by noting that it multiplies
¢ in the frictional dilatancy term in (19). The ratio C¢/gy is
thus the ratio of the frictional dilatational strain rate (part of

» (19)
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Figure 3. Results of a numerical experiment where it is as-
sumed that the strain rate is uniform within the gouge zone used
to illustrate what is measured in a typical slide-hold experiment.
After a preparation time to bring the sample to steady state, the
load point is stopped. (In this special case, the preparation time
has no effect on the results and is shown schematically.) The
decrease in shear traction during the hold from continued slip on
the gouge is called relaxation (above). The peak shear traction
above its previous value is called healing. The recovery of
shear traction may be measured as a function of time from res-
tart (top) or alternatively as a function of time from that of the
peak shear traction (not shown). Compaction during the hold is
shown (below). The stiffness is 25 MPamm™'. The normal trac-
tion is assumed to be sinusoidally oscillated about its previous
value with a full amplitude of 24 during the hold.
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df /0t) to shear strain rate € Sleep [1997] assumed that this
ratio was an intrinsic material constant to derive (19).

2.2.3. Slide-hold tests. In a slide-hold test, sliding is
stopped for a period of time and then restarted at its previous
velocity and normal traction. Normal traction may be varied
during the hold. Compaction during the hold and shear traction
upon and after restart are measured. Slight amounts of slip
occur during the hold because of finite apparatus stiffness
[Richardson and Marone, 1999]. We first consider an ideal
hold where no slip occurs.

The behavior of the gouge region outside of the high-strain
shear band must be explicitly considered to represent a slide-
hold test. The experiments of Richardson and Marone [1999]
were started with preground gouge. The initial slip in the gouge
was not localized, and some strain occurred throughout the
gouge before the strain rate localized. The evolution of the
state variable outside the high-strain rate zone can be inferred
from (2b). At the constant normal traction conditions during
sliding in the experiments the state variable outside of the high
strain zone increases linearly with time. Its value remains finite
over the finite preparation time of the experiments. At the start
of a hold its value is unknown; we call it ., Note that the
preparation time must be distinguished from the hold time and
the time since restart from a hold (Figure 3). In general, the
evolution equation (2b) for regions outside the shear band where
the strain rate is zero is

dyx) _ &P

at 8imP g/ b (20)

This equation applies throughout the entire gouge layer during
holds.

We consider a hold where the previous normal traction is the
reference value P, without loss of generality. The initial value
of Wy4 in the shear band is given by (7). Once the hold starts,
W both within and outside of shear bands increases by the same
amount in (20). That is, the changes in y and the delocalization
associated with them are not instantaneous within the theoretical
framework but depend on hold time.

Conditions for strain rate delocalization upon restart are
obtained from (6). For siniplicity, the strain rate within the
shear band prior to the start of the hold is assumed to be the
steady state value o4 in (7) and the width of the shear band is
assumed to be its steady state value which we call W. The
ratio of strain rate inside the previous high-strain zone to the
strain rate outside in the rest of the gouge upon restart depends
on the ratio of y outside to y inside to the power of b/a. That
is, strain remains localized within a shear band of given thick-
ness when the ratio (Weu+1)/(Wou+l) is small, where the
change of y over time is

Isj.ﬂdt

21
eintP(gﬂb ( )

Both the short- and long-term limits of the ratio yield simple
expressions.

In the short time limit, / is much smaller than ,,, and strain
rate remains localized. (Conditions for the limit can be obtained
by evaluating I.) The strain rate upon restart is hence the previ-
ous strain rate and the change in shear traction from the steady
state value is from (20)

Youa +1

At = Pob In
Yolid

(22)
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The change in porosity from (13) is
Wola t I

Af =—C:In
f ¢ Wold

(23)

In terms of the observable macroscopic quantities the ratio of
the change in compaction to the changes in shear traction is
CAfWy  CoWy

= , 24
At P ()b @4)

which implies that the apparent ratio of C¢/b is Wy /Wyon of
the actual ratio.

For long hold times where I >, there is little strain local-
ization on restart in the theoretical model. The initial high
strain zone can be ignored for computing shear traction. The
new (uniform) strain rate throughout the full nominal thickness
Woom 18 W /Woom of the previous steady state one. The change
in shear traction upon restart is

W, uF
At:Po[aln[ : ] + bln| Lot (25)
nom Wold
The change in porosity within the shear band is
oa+t 1
Afin=—C,In| Y™ (26)
Youd
and the change outside the shear band is
wt !
Af ou = —C In| YouT2 ] (26b)
out

In the limit of very long times when [ is large, the effect of the
preexisting shear band on the numerator of (26a) can be ignored
because Woq + I = Wou + 1. The compaction is the sum of the
changes inside and outside of the shear band:

_WnomAf app — Ws.\‘ Af in — (Wnom_'Wss)Af out

wout + I

Wout

=W;C.In
Wold

+ WiomCe In , 27

out

where Af 4 is the average value of porosity change through the
gouge zone.

Again returning to macroscopic variables, the rate of change
of shear traction relative to compaction from (25) and (27) is

aAf app _ CeWoiom

—Wn m =
© ot Pob

(28)

This limiting slope is predicted to be independent of the history
of the sample, including that prior to the start of the hold and of
the steady state width of the shear band Wi,.

To reiterate, the results of a slide hold test may be plotted as
the degree of compaction of the fault zone versus the increase in
shear traction from its previous steady state value upon restart
(Figure 4). At short times the curve is linear with a slope of
W Ce/bPy and passes through the origin. At long times the
slope is W,,,C/bP,, but the curve does not pass through the
origin. In principle, the amount of strain localization is given
by the ratio of the slopes at large and small times. The long
time slope is the same slope that would occur in the absence of
any strain localization (which can be seen by setting Wy, = Wyom
in (24) or in (25) and (26)). In the case starting with uniform
strain rate in the gouge, the curve goes directly through the ori-
gin. In both cases, the value of C. can be determined from (28)
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Figure 4. (left) Relationship between healing and compaction for the simple model of a shear band of width W
within a gouge zone of width W, shown schematically. At short times, behavior is controlled by the localized
shear band and at long times it is controlled by the full width of the gouge zone. The extrapolations of the
linear segments of the curves are shown by thin lines. Here it is assumed that the high-strain rate zone is 0.1 of
the gouge zone thickness and that a value of y within the high-strain rate zone is 1 at the start of the hold com-
pared to y=1000 outside. (right) State variable plotted as a function of position x within the gouge zone (right)
at the start of the hold and after passage of a hold time which increases the state variable everywhere by 5000.
The ratio of the state variable inside the shear band to that outside approaches 1 in the limit of long hold times.
The position of the shear band within the gouge zone is arbitrary and does not effect the predictions of this sim-

ple model.

and from data taken at long times where the entire gouge zone
is compacting.

In addition, the parameters b and C,, are measured indepen-
dently on velocity stepping tests. The localized width W and
the nominal width W, of the gouge zone can be measured
independently if one is able to solve the very difficult problem
of imaging the interior of a sample during sliding.

The plot in Figure 4 of compaction versus frictional healing
(peak increase of shear traction above its previous steady state
value after restart in Figure 3) is independent of the exponent
o/b and the history of normal traction during the hold. This
can be seen from (22), (23), (25), and (26). The normal traction
history and o/b appear only through (21) in the integral /.
That is, the value of I, not the path by which it was reached,
affects this plot. We take advantage of these features when
addressing real data in sections 3.2. and 3.3.

2.3. Numerical Strain Localization Model

The analytical results in the previous section are useful for
understanding the qualitative behavior of fault gouge with strain
localization. A more quantitative representation is desirable for
comparison with laboratory data. We apply a formalism
developed by Sleep [1997], which is not rigorously derived but
does have the necessary properties of a one-dimensional strain
rate localization theory.

2.3.1. Continuum theory. We apply the result of Sleep
[1997] that strain rate localization during sliding occurs spon-
taneously provided that b >a in (1b). In this case, the steady
state shear traction decreases with increasing strain rate which
can be obtained by combining (1b), (4), and (5)

T, = P g + (@ —b)In(e/gg)] . 29)
It is evident that a very large strain rate produced by extreme
strain rate localization would produce a very low shear traction.
This creates a problem when strain rate is represented by a
numerical grid. Unless special precautions are taken to prevent
it, the strain rate will localize to a single numerical grid or ele-

ment [e.g., Delaplace et al., 1996]. This makes the final result
unacceptably dependent on the grid spacing instead of on physi-
cal properties of the gouge such as grain size and shear band
width.

Sleep [1997] let the evolution equation for the state variable
be in our notation be

) _ BP™ ylE()w ()]

at EintP (l)ﬂb (3 0)

Eint
where the asterisk denotes convolution, x is distance across the
gouge zone, and

w (x)=w exp[-x*/h?] 3D

is a weighting function, where w is a normalizing factor so that
the integral of the weighting function from —eo to e is 1 and &
is a length scale (Figure 2). The form of the evolution equation
(30) retains the same physics as the simple form (2b), except
that the strain rate-dependent term depends on a spatial average.

Equations (29) and (30) along with the flow law in (6) can be
solved analytically for steady state sliding. Following Sleep
[1997], the steady state strain function is

£(x)=¢t.exp[-x%c?] , (32)
where €, is a constant and ¢, is the length scale for strain rate
localization. The steady state value of the state variable is

y)=yexplxey] (33)
where ; is a constant and c,, is the length scale for the state
variable. Note that y is predicted to remain finite (rather than
having exponentially large values for large |x 1) because there is
only finite time for evolution in (30) to occur in a real experi-
ment.

Spatial invariance of shear traction across the fault zone
implies that ac{ = bc2, which can be seen most easily by sub-
stituting (32) for € and (33) for  into (1b). Solving (30) for
steady state conditions by invoking the convolution theorem
yields the length scale for strain localization
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, (34)

C1=h I:ﬁ"l
a

which has real-valued solutions only when b >a (Figure 2).
That is, the condition for strain localization (mathematically that
¢ is real in (32)) is the same as that for velocity instability with
sliding at constant shear traction b >a. This formulation has
the desired result that the width of strain rate localization is
given by physical parameters (h, a, and b), not a numerical
grid.

The formulation of the continuum in (30) can be qualitatively
understood if €(x) is a macroscopic value obtained by averaging
the actual instantaneous microscopic strain rate over a planar
surface a distance x into the gouge zone. The damage (say tail
cracks or dilation within a densely packed granular aggregate)
from the strain rate at any point in the gouge zone is distributed
over a distance & perpendicular to the layer about x because the
finite size of grains limits localization. We do not, however,
have a way to find & from grain size by first principles. Here &
denotes the effective width of a shear band with diffuse boun-
daries. The weighting function w(x) gives the probability of
damage (or frictional dilatancy) occurring around the nominal
position x of the shear band. Thus in the sense that w(x) deter-
mines where in the shear band the next increment of strain will
be accommodated, it is crudely analogous to a wave function in
quantum mechanics telling the probability of where a particle
might be detected. The Gaussian form in (30) is attractive in
that it introduces a characteristic length in a way which appears
in numerous cases where probability is involved and yields
clean analytical solutions. The form of the strain rate function
(here (32)) provides a test of the validity of the weighting func-
tion w in (31) and the continuum theory in general. Unfor-
tunately, we have no way to directly measure strain rate within
the gouge during sliding.

2.3.2. Relationship of continuum and simple models. The
results of the simple model in which the shear band is of width
W are helpful for qualitatively explaining features that arise
from numerical experiments based on the continuum formula-
tion. Qualitatively comparison is aided by noting that the width
2c; is a more sophisticated representation of the shear band
width W in the simple model. The effective steady state width
W, of a shear band in the continuum model is proportional to
h from c; in (34). For the numerical representation to work,
the length A must be represented by several grid points; we use
8. The length & also needs to be significantly less then the
width of the gouge zone W, so that the boundaries of the
zone do not strongly affect the convolution in (30). In the case
that /2 is comparable to or larger than the gouge zone width, lit-
tle localization occurs and the process is adequately represented
by assuming uniform strain rate throughout the fault zone. That
is, by using the traditional macroscopic variables velocity and
shear traction.

2.3.3. Numerical method. An explicit computational
method was used in the numerical models. The state variable
Y(x) and the strain rate & were represented on node points.
Integrals over space were evaluated by summing of the node
points.

In several of the models it was assumed that the apparatus
was infinitely stiff and the velocity on the walls of the gouge
and the normal traction were imposed as boundary conditions.
Time steps were done by evaluating (30) to get a new W(x)
from the old y(x) and the old &(x). A new value of the strain
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rate £(x) was obtained from the updated y(x) using (6) and
solving for T to have &(x) integrate to the velocity V across the
fault zone. The compaction was obtained from the state vari-
able using (13) and integrating the change in porosity across the
fault zone. During holds the strain rate was set to zero in (30),
and the healing upon restart was obtained from (6) for the slid-
ing velocity at each time step. Note that the shear traction dur-
ing the hold from (1b) is undefined for the infinitely stiff
apparatus because the strain rate is zero. This feature, however,
does not affect evaluation of the evolution equation (30).

Models representing an elastic apparatus differed in that a
velocity was imposed at a load point connected to the gouge
wall by a spring. A new strain rate &(x) was obtained from
y(x) and the shear traction T using (6). An updated state func-
tion (x) was obtained from the old y(x) and the new &(x)
using (30). The velocity across the fault zone was obtained by
integrating €(x). The displacement of the wall relatively to the
load point during the time step was used to obtain a new value
of the shear traction T on a spring. The procedure gives well-
defined shear traction T during holds as well as at other times.

The results of a numerical experiment in which by assump-
tion no strain rate localization occurs are shown in Figure 3 to
illustrate our terminology and for later comparison with models
representing strain rate localization. After a preparation time of
sliding at constant velocity, a hold is begun. Some slip contin-
ues on the gouge plane causing the shear traction to decrease
which we call relaxation. When sliding at the load point is res-
tarted, time is required for elastic loading. The difference
between the peak shear traction and its previous value is called
healing. After a short time, the shear traction returns to its pre-
vious steady state value. Compaction occurs during the hold,
and the porosity returns to its previous steady state value after
some sliding. In this case that there is by assumption no strain
rate localization, the results of the numerical experiment are
independent of the preparation time because W =W, and thus
there is no low-strain rate part of the gouge to compact and
evolve.

The history of shear traction and compaction was also com-
puted for a model where the normal traction oscillated with
2A =11.5 MPA, an amount in some of laboratory experiments
by Richardson and Marone [1999] (Figure 3). The shear trac-
tion relaxes more during the hold than it does for 2A =0
becauses some slip occurs when normal traction is low during
an oscillation. From (21), compaction and evolution of the state
variable occur mainly when the normal traction is high. In this
case which does not have strain rate localization, the time for
the shear traction to recover to steady state does not strongly
depend on the normal traction oscillation 24 during the hold or
the duration of the hold, but only on the macroscopic critical
displacement D, .

In contrast, the simple theory for strain rate localization indi-
cates that recovery time depends both on preparation time and
the "duration" of the hold measured by the integral I in (21).
For long preparation times and short holds the strain rate is still
localized within the previous high-strain rate zone of width W
upon restart. The small amount of slip needed for recovery
scales with the apparent critical displacement in (12a). Con-
versely, the strain rate is delocalization throughout the gouge
zone for short preparation times and long holds. The large
amount of slip needed for recovery scales with the critical dis-
placement D,, when strain rate is localized prior to a hold and
delocalized after a hold.
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3. Comparison of Experiments With Theory

In section 2 the theory developed by Sleep [1997] was
applied to obtain predicted behavior of gouge during velocity-
stepping and slide-hold tests. We compare this theory with
experimental results in sections 3.2 and 3.3. Before doing this,
we summarize the experimental procedure and how it differed
from more idealized computer representations.

3.1. Experimental Procedure

We briefly review the experimental procedure of Richardson
and Marone [1999]. They used a servocontrolled double-direct
shear apparatus. At the start 10 cmx10 cm blocks were
separated by 3-mm-thick synthetic gouge layers made of fine-
grained 50-150 pum quartz powder. The normal traction and
velocity at a load point were controlled. Compaction was meas-
ured by the approach of the blocks, and the shear traction was
measured at the load point. Two gouge layers were present in
the experiments. The total compaction of both layers was meas-
ured and the result divided by 2; the average of the shear trac-
tions on the layers was similarly obtained.

Sliding was allowed to progress to allow the gouge to
mature. A series of velocity-stepping, normal-traction-stepping,
and slide-hold tests were then performed. During some of the
holds the normal traction was oscillated sinusoidally about its
previous value with a 1-Hz frequency. The purpose of the
oscillations is to represent more complicated changes in normal
traction that occur on real faults at rest in a simple way. The
velocity-stepping experiments constrain rate and state friction
parameters independently of the slide-hold tests.

3.1.1. Dependence on starting conditions. The experi-
ments of Richardson and Marone [1999] were not planned with
the theory of Sleep [1997] in mind. Problems in applying the
theory arise from its dependence on the starting conditions,
which were not well controlled in the experiments.

The numerical slide-hold experiments were started in a way
that might be potentially controlled in the laboratory. The
numerical experiments are started with essentially delocalized
sliding rather than fully delocalized sliding. Perfectly delocal-
ized sliding, which is numerically started using uniform steady
state value for y(x) in (4), is unacceptable. The state variable
in (2b) can never evolve from its initial value because the strain
rate is everywhere exactly the uniform macroscopic value.
Rather, the starting function y(x) needs to be perturbed by sub-
tracting a small amount, Ay(x), from its uniform steady state
value. (An analogous example is a pencil perfectly balanced on
its point; it stays put in a computer model but falls if slightly
perturbed.) The function y(x) then evolves by (2c) with sliding
at a constant velocity. Our perturbation function, Ay(x), has
zero mean. The greatest values of Ay(x) were imposed near
the center of the gouge (so that a Y shear and not a B shear
resulted), and perturbation function was not exactly symmetric
about the center of the gouge (to avoid the special case of sym-
metric localization). The same arbitrary perturbation was used
for all runs at a given A. The position of localization within
synthetic gouge is expected by the theory to depend on pertur-
bations from heterogeneities as seen in Figure 1 and not be
predictable.

To represent slide hold tests, numerical sliding at constant
velocity was maintained for a period of time, and then the hold
commenced. The variation of the state variable and the strain
rate across the fault zone before the start of the hold are deter-

25,883

Vary strain rate localization

I 1 I I
| 2A=11.5 MPa +
2A=5.6 MPa O

40

£ 30 -
=3
I3
2 20 4
%é_ h=0.008W o0
8 10 h=0.016Wpom

] |
0.8
MPa

0 0.4 1.2

Healing,

Figure 5. Change of shear traction from its previous steady
state value on restart (healing) plotted against compaction during
the hold. Experimental results for various normal traction oscil-
lations 24 are shown as points. Each point represents a single
slide-hold test. The computed curves with strain localization
give tolerable fits. The computed curve without strain localiza-
tion gives a poor fit. All the curves become parallel for large
compactions and healings. The computed compaction scales
linearly with C, and healing scales linearly with ». The
preparation time for the theoretical curves is assumed to be 384
s.

ministic results of the initial perturbation and the material pro-
perties. Basically, a high-strain rate zone formed within the
gouge surrounded by an essentially nondeforming region as
predicted by both the simple and the continuum models. In the
simple model the value of the state variable outside of the
high-strain rate zone is (W) at the start of the hold. In numer-
ical simulations the state variable and the strain rate approach
their analytical steady state values (given by (33) and (32))
within the zone of significant strain rate. Outside this high-
strain rate zone, the strain rate is essentially zero. The second
term in the evolution equation (30) is thus essentially zero there.
At constant normal traction as occurred during sliding in the
laboratory experiments, the state variable outside the high-strain
zone increases linearly with time. Its value at the start of the
hold (W, in the simple model) is approximately the sum of the
steady state value in (4) for uniformly distributed shear strain
and a term from (21) that is linearly proportional to the prepara-
tion time. We use both concepts of W, and preparation time to
qualitatively discuss our numerical results and the laboratory
experiments.

Slide-hold testing of Richardson and Marone [1999] com-
menced after the initial properties of the gouge had evolved so
that velocity-stepping experiments indicated that b >a. Strain
rate localization is then theoretically expected from (34). A
new hold was started as soon as the shear traction approached a
steady state. This allowed many tests to be conducted on each
sample but caused the displacement and normal traction history
prior to each test to vary.

A potentially avoidable source of scatter arises from the
laboratory starting conditions when all the data are grouped on
one plot as in Figure 5. The value of y,,, at the start of a given
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test was likely to have been somewhat different from the others.
We return to the systematic effects of this situation in section
3.3.2.

An unavoidable result of the laboratory procedure is illus-
trated by Figure 5 where compaction is plotted as a function of
healing. Compaction during each hold was measured in the
laboratory as a function of time and the compaction at the end
of the hold plotted. However, finite slip is needed to measure
healing in the laboratory, as illustrated by the numerical simula-
tion in Figure 3. That is, healing could not be measured
without ending a hold. The results of a given slide-hold test
thus appear as a point on Figure 5. In contrast, the theoretical
curve is continuous as it is easy to compute healing that would
occur if the sliding was started at a time and to also continue to
follow changes in the state variable which would occur if the
hold was continued.

3.1.2. Problems with gouge geometry. A minor source of
scatter when the data are plotted together (shown in Figure 5)
arises because the thickness of the laboratory gouge zone varied
from its nominal, initial thickness due to comminution and
geometric thinning with slip [Scott et al., 1994]. The magnitude
of the effects is constrained by the simple model. It is not pos-
sible to usefully normalize compaction to gouge zone thickness
Waom for all lengths of holds. For short holds the predicted
slope on Figure 5 depends only on the properties of the high-
strain rate zone in (24). For very long holds the entire gouge
zone compacts during the hold and deforms when sliding is res-
tarted. The problem arising from plotting the compaction rather
than compaction normalized to nominal gouge thickness is illus-
trated by the simple model. From (28), compaction at long
times increases with the actual nominal thickness of the gouge
layer Wom. Then, the shear traction in the delocalized zone
scales from strain rate in (1b) as aP In(W /W ), where W, is
the assumed thickness of the gouge zone. In the laboratory
experiments, Wyon is measured precisely, and its absolute value
is known to within =100 um. However, W, is not a controll-
able parameter due to changes in particle size distribution, parti-
cle comminution, and packing. There is some variation as a
function of slip and between experiments. As a point of refer-
ence, we note that a factor of 2 error in gouge thickness would
produce a minor computed shear traction error of 0.1 MPa for
the experimental P = 25 MPa and a =0.0054.

3.2. Calibration of Numerical Experiments

We apply our theory and numerical model to represent the
behavior of the laboratory gouge zones in an idealized manner.
For many of the simulations we assume a perfectly stiff loading
apparatus where the normal traction and velocity are controlled
and compaction of the fault zone and the shear traction during
sliding are measured. That is, the velocity is instantaneously
changed during numerical slide-hold and velocity stepping tests.
Calculations with finite stiffness (Figure 3) indicate elasticity is
expected to have little effect on these quantities.

We are now ready to compare data with theory. Richardson
and Marone [1999] used a double-direct shear apparatus to
measure the properties of their synthetic gouge. Their velocity-
stepping experiments constrain a, b, and the apparent value of
critical displacement D ,,,. We assume that these parameters are
already known before the start of the slide-hold tests and are the
same for every test. We use the laboratory velocity stepping
experiments to obtain that a =0.0054 and b =0.0066. We cali-
brate our other material properties using eyeball fits to the
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observed data. Velocity-stepping experiments reduce the
number of free parameters available for interpreting the slide-
hold tests.

To appraise the effect of strain localization, we consider two
representative gouge zones. In the one with milder strain rate
localization the localization scale h is assumed to be
0.016 W,om. In the stronger localization model it was assumed
that # =0.008 W,om. From (34) the characteristic steady state
thickness of the high-strain zones (=W,) are then
2c; = 0.068Wyon and 2c; =0.034W,,,, respectively. The
apparent critical displacements are 0.116 and 0.058 of the dis-
placements for uniform strain over Wy, respectively. That is,
W, is these factors times W oy, for the two models.

To express the quantities in dimensional units, we use the
observed value in a velocity-stepping test of D,,, = 15 um for
the apparent critical displacement and the actual value of the
nominal gouge zone width is Wyun=2140 um (the value
obtained in one experiment). The material property &, in (12a)
in the mild localization model is then
15 um/(2140 um*0.116)=0.06. In the strongly localized model
it is 15um/(2140 um*0.058)=0.12. The high-strain zone
widths 2c, are 146 and 73 pm, respectively, which are similar
in magnitude to the measured shear band widths (e.g., Figure 1).
An estimate of the magnitude of the intrinsic dilatation faction
C. of 3.4x 107 is obtained by applying the long-time limit in
(28) to our healing versus compaction data in Figure 5 using our
measured values for b =0.0066, W ,,=2140 um, and normal
traction during sliding of Po=25 MPa. The exponent o/b is
estimated in section 3.3.3 to be “16 by comparing the time
dependence of healing in slide-hold experiments with and
without normal traction oscillations. The experimental velocity
at steady state was 10 ums™.

3.3. Analysis of Data

A key feature of the slide-hold test by Richardson and
Marone [1999] is that the normal traction was oscillated
sinusoidally during holds with a full amplitude of 2A. This
provides a test of the theory as changes in the state variable
within the fault zone during a hold are predicted to depend only
on the integral I in (21) and not the normal traction versus time
path to obtain its value. We thus compare data and predictions
for holds with constant normal traction to those with oscillatory
normal traction.

3.3.1. Healing versus compaction. We begin by comparing
the observed compaction during each hold with observed heal-
ing (Figure 5). The predicted curve does not depend upon the
parameter a/b. It is also independent of variations of the nor-
mal traction during the hold, including the intentional variations
represented by the parameter 2A and those owing to instrumen-
tal vagaries. This feature allows data with various 2A and vari-
ous hold times to be examined together. In Figure 5 it is obvi-
ous that the straight line through the origin (which would be
expected if no strain localization occurred) is incompatible with
the data, implying a finite characteristic localization length h.
The curves for & =0.008 W, and A =0.016 W, give compar-
ably reasonable fits within the scatter of the data. For both
curves representing strain localization the preparation time is
384 s. This is a reasonable estimate for the laboratory prepara-
tion times, which are not well constrained because a
complicated history occurred before each hold.

The differences between the 4 =0.008W,,, and
h =0.016W ,, curves can be understood in terms of the simple
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localization model discussed above. That is, the width of the
steady state high-strain rate zone W, is a factor of 2 greater for
h =0.016W o, than for 2 =0.008W .. At very small compac-
tions the short time limit in (24) holds implying that compaction
is proportional to steady state shear band width W, and to k.
This implies that the h =0.016W,,, curve lies above the
h =0.008 W, curve with twice the slope. (In practice, the ini-
tial linear region occurs for holds that are too brief to do in the
laboratory experiments.) The slope at large values of compac-
tion and healing for both curves is the same as expected from
(28). The modest offset between the two curves for large com-
pactions is related to the different critical strains &g, but a sim-
ple expression quantifying the difference as well as a simple
qualitative explanation were mnot found. In any case, the
difference between the two curves cannot be resolved within the
scatter of the experimental data.

3.3.2. Effect of preparation time. The 24 =0 data are sys-
tematically below both the A =0.008W ., and A =0.016W oy
curves and the 2A >0 data (Figure 5). The feature may be an
unintended artifact of a systematic correlation of the preparation
time with 24 in the laboratory experiments. The laboratory
slide-hold with 24 =0 tests were conducted sequentially. The
simple theory illustrates the expected consequences. As the
integral I in (21) for a given length hold is less for 24 =0 than
for 2A >0, the criterion for delocalization that I >\, was less
likely to be achieved than for 2A >0. Thus the 24 =0 holds are
expected from the theory to be less likely to delocalize strain
rate. During a long series of slide-hold tests the state variable
outside of the zone of active slip continued to increase
throughout both holds and slides. Conversely, delocalization is
expected to have occurred after holds with 2A >0, resetting Wou
in each cycle and preventing o, from growing with repeated
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Figure 6. Compaction and healing plotted as in Figure 5. Data
are represented by points and theoretical models are represented
by curves. The effect of thé¢ preparation time since the last
strain rate delocalization is shown for h =0.016W,,. The 24 =0
data fall between the preparation time of 384 s curve on Figure
5 and the 1538 curve on this figure. These times are within the
range applicable to the experiments. Variability in the prepara-
tion time is a viable explanation for much of the scatter in the
data as well as the systematically low compactions of the 24 =0
experiments.
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Figure 7. Healing shown as a function of hold time. Experi-
mental data for 24 =0 (solid dots) and 24 =11.5 MPa (crosses)
are shown with numerical results (a) for A =0.016W,, and (b)
for h=0.008W,,,. Different lines represent different preparation
times since last delocalization for 24 =0 (Figure 7a). Healing at
longer times is weakly dependent on the preparation time since
last strain delocalization (Figure 7a). The h =0.008W,,,, model
gives a slightly better fit to these scattered data. The difference
between the 24 =0 and 24 =11.5 MPa curves scales with o/b.
Curves for 24 =11.5 MPa are shown for a/b of 16 and 32 (Fig-
ute 7b). All the 24 =11.5 MPa curves assume a preparation time
of 384 s. Healing scales linearly with b.

cycles, even though they were also conducted sequentially in the
laboratory experiments.

The significant theoretical effect of the preparation time on a
compaction versus healing plot is shown in Figure 6. In terms
of the simple model the criterion for the long time limit in (28)
for a linear healing versus compaction curves is that I > foy.
The increase in I needed for this is thus greater for long
preparation times where ., is large. From (25), larger values
of I and of W at the point where a curve in Figure 6 becomes
linear imply a larger healing at that point. The curve for a
preparation time of 192 s goes through the 24 >0 points, while
a longer preparation time it goes through the 2A =0 points.
This provides a potential explanation of the difference between
the two groups of data. The values of preparation time are rea-
sonable from the experiments but cannot be further quantified
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with the available data. This difficulty provides a demonstration
that (within the scope of the theory) it is important to control
the history before each hold.

3.3.3. Constraining material parameters. The curves of
Figures 5 and 6 are independent of the parameter a/b and only
weakly dependent on the localization scale h. The variation of
healing as a function of hold time constrains of these quantities
(Figure 7). Again each laboratory slide-hold test is represented

by a point and the numerical solution is represented by
continuous curves.

The value of A is constrained by the 24 = 0 curves which
are independent of /b as normal traction is then constant in
(21). The curves are not strongly dependent on the preparation
time since the last strain rate delocalization, a parameter which
is known to have been poorly controlled in the laboratory exper-
iments. The A =0.008 W, curves give a slightly better eyeball
fit than the A =0.016 W . (A smaller value of & implies a
shallow slope.) This value of & =0.008 W, is used in the sub-
sequent calculations that model data.

Once the value of 4 is constrained to be around 0.008 W,
by the 24 =0 curve, the value of a/b is constrained by fitting a
2A >0 curve to laboratory slide-hold tests where 2A >0. The
2A =11.5 MPa data are used here because the theory predicts
the greatest effect for the largest available 2A. Unfortunately,
the data on Figure 7 are highly scattered. The healing for the
two 10-s holds is greater than that for the two 30-s holds.
Paired measurements do not reproduce the same healing, espe-
cially for two 300-s and the two 1000-s holds. A hint that heal-
ing increases with hold time is defined by the 1000-s data along
with the gross magnitude of the effect, but that is about all.

A value of a/b =16 gives a eyeball fit through the highly
scattered data. An uncertainty estimate is obtained by noting
that the theoretical difference between the 24 =0 and the
2A =11.5 MPa curves is increases with o/b. Increasing a/b by
a factor of 2 gives a curve that passes through the highest
values of the points (Figure 7).

The parameter o is also measured by normal traction step-
ping tests at constant velocity. Our values of b =0.0066 and
/b =16 imply that a=0.11. This value of « is lower than the
values obtained from normal traction stepping tests. Richardson
and Marone [1999] obtained 0.3 on the samples discussed in
this paper, and Linker and Dieterich [1992] obtained 0.2 on
another suite of samples. Our value is not unreasonable as there
was considerable uncertainty in these estimates and in our esti-
mate.

3.34. Slip- and/or time-dependent behavior after holds.
The time-dependent recovery of shear traction after restart fol-
lowing a hold is predicted by the theory to be an indication of
the amount of strain rate delocalization. Longer holds and
higher values of the normal traction oscillation 2A are predicted
from the simple theory to delocalize strain rate upon restart.
The preparation time is predicted to have a significant effect on
behavior after brief holds for 24 =0.

We begin with the behavior after holds where
2A =11.5 MPa. The observed recovery curves for
2A =11.5 MPa are essentially linear (Figure 8). The model

curves are linear for small times and have the slope observed in
the laboratory experiments. Once about half the "healing" shear
traction has recovered, the theoretical curves go quickly to zero.

The behavior of the theoretical curves can be understood as
follows. Initially, the strain rate is distributed essentially uni-
formly across the gouge zone. Displacement of WyomEine 1S
needed for the state variable to evolve and localization to begin.
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Figure 8. Recovery of shear traction following laboratory holds
of 100, 300, and 1000 s shown by the light lines for
2A =115 MPa. The heavy lines show model results for 100 and
1000 s also with 24 =11.5 MPa. Time since peak friction and
displacement since peak friction axes are given. The observed
curves do not show the kink apparent in the theoretical curves.
It is assumed for the numerical models that #=0.008W,,, and
that the preparation time is 384 s.

Once localization begins the width of the high-strain rate zone
becomes W which is less than the full nominal width W ..
The displacement to further localize strain rate Weg;, decreases
as the width W does. This causes rapid evolution to the steady
state width W, of the high-strain rate zone and the steady state
shear traction.

The linear form of the laboratory curves is not attributable to
the fact that double-direct shear apparatus was used so that the
observed shear traction is the sum of that on two gouge layers.
In the real experiments the properties of the two zones probably
differed, and the predicted rapid change in shear traction associ-
ated with localization is expected to have occurred at different
times in each zone. From this reasoning, the measured shear
traction curves are predicted to have separate kinks associated
with each localization event if they are in fact the sum of two
theoretical curves. However, the observed curves are linear
without any kinks.

A more reasonable but qualitative explanation within the
scope of the theory is that the observed linear behavior results
because strain rate localization within the experimental gouge is
a three-dimensional process rather than the one-dimensional one
chosen for simplicity in the numerical simulations. We make
no attempt here to formulate a three-dimensional theory of a
fault gouge. Instead, we use the one-dimensional theory to
obtain qualitatively differences its predictions and real three-
dimensional strain rate localization.

First, our one-dimensional model presumes uniform material
properties. One look at Figure 1 confirms the complex
geometry of the real gouge. The particle size distribution and
mean size differ significantly within and outside of the shear
bands.

Returning to the absence of kinks in the observed curves in
Figure 8, we suggest that the final strain rate localization
occurred gradually rather than abruptly as in the theoretical
curves. Gradual strain rate localization, but not necessarily a
linear recovery curve, is expected in three-dimensional gouge
where displacement in continuous. Heterogeneities in the
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Figure 9. Observed recovery of shear traction following holds
shown as in Figure 8. Theoretical results following a 100-s
hold are shown for preparation times since last strain delocaliza-
tion of r=384s and 1538 s (heavy lines). The longer time fits
the duration but not the shape of the observed curve (light line).
It is assumed that 2=0.008 W, in the numerical calculation.

gouge, as well as heterogeneities in the stress associated with
them, tend to cause the strain rate to initially localize on
different Y shears or B shears at various positions within the
gouge zone. Riedel shears, which cannot be represented quanti-
tatively in one dimension, may take up some of the strain. Time
is required for a single Y shear or B shear to establish itself at
the expense of the poorly aligned network of Y shears, B
shears, and Riedel shears. In contrast, a single Y shear at the
previous high-strain rate zone is established in the one-
dimensional model as the vestiges of the high-strain zone prior
to the hold are the only perturbation present.

The observed shear traction recovery for 2A = 0 MPa pro-
vide another example which can qualitatively be attributed to
three-dimensional deformation in the gouge. Observed recovery
consists a rapid decrease in shear traction followed by a slower
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Figure 10. Observed shear traction during 100-s holds shown
by the light line. The heavy line shows theoretical results for a
spring slider model with the preparation time of 1538 s. The
stiffness is 25 MPamm™. It is assumed that »=0.008W . The
predicted relaxation of shear traction is somewhat less than ob-
served. The duration but not the shape of the recovery curve is
correctly predicted.
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decrease (Figure 9). The observed time and displacement
needed for recovery are much less than for 24 =11.5 MPa.

The model curves do not have the observed shape and are
dependent on the preparation time since the last strain delocali-
zation. The shape difference between the observed and labora-
tory curves is not an effect of elasticity. The results of a model
including elasticity are shown in Figure 10. The slip-weakening
curve with elasticity is similar to the very stiff case in Figure 9.
That is, the predicted recovery of shear traction after the hold
has the same duration but not the same shape and amplitude as
observed.

The gross behavior of the slip-weakening 2A=0 data is
explained qualitatively within the scope of the theory in terms
of three-dimensional effects in a limited part of the gouge zone.
After a hold, most of the high-strain rate zone remains localized
at is initial steady state width Wy, and a little is somewhat delo-
calized to a new width of W,,. During recovery the localized
part recovers over a displacement of Wi, &, and the partly delo-
calized part recovers over a displacement of W& The
observed recovery curve may be interpreted has the sum of
curves recovering over each length scale.

The effect of preparation time on strain rate delocalization
upon restart is quantified in the models by the concept of strain
rate amplification defined as the ratio of the maximum strain
rate to a uniform strain rate over the nominal gouge width Wy,
(Figure 11). From the theory, long preparation since the last
strain rate delocalization affects the value of the state variable
outside the zone of high strain rate. When this time is large,
the state variable outside the high-strain zone is large, and the
the ratio of the state variable outside the previous high-strain
rate zone to the inside state variable does not change much dur-

10 T T T T T

rate amplification
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Hold time, s
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Figure 11. Computed strain rate amplification upon restart plot-
ted as a function of hold time. The preparation time since the
last strain delocalization is shown on each curve. Strain rate
amplification is defined as the ratio of the strain rate at the
fastest sliding grid point to the strain rate for uniform deforma-
tion in the gouge. That is, it is 1 when there is no strain rate
localization. The continuum imposed by the length scale h
makes these results nearly independent of the grid spacing. Lo-
calization upon restart decreases with hold time as the state vari-
able becomes more uniform throughout the gouge as shown in
Figure 4. The initial ratio of the state variable inside and out-
side the high strain zone increases with preparation time; longer
holds are needed to reduce the ratio. The curves are computed
using £ =0.016W, . and 24 =0.
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ing short holds for 24 =0. For 24 =0 the predicted strain rate
is already localized over most (but not all) of the area of the
gouge zone upon restart. For example, most of the recovery for
the observed 1000-s hold curve for 2A =0 in Figure 9 occurred
within within a few seconds. In comparison, the observed
recovery duration after the 10-s hold with 24 =11.5 MPa in
Figure 8 (which has healing similar to the 1000-s hold curve in
Figure 9) is “100 s. In terms of the simple theory the brief
preparation time of this experiment caused Y, to be small
enough that essentially complete delocalization over all the area
of the gouge zone occurred during the hold. The displacement
to relocalize strain rate was ~ W omEine

The relaxation of shear traction during the hold in the model
is somewhat less than observed (Figure 10). This is consistent
with results from Marone [1998] showing that relaxation is con-
sistently underpredicted by a time-dependent state evolution law
using constitutive parameters fit to small velocity step perturba-
tions.

3.3.5. Dilatancy parameter. We obtain the intrinsic dila-
tancy factor obtained by curve fitting in Figure 5. Our preferred
value of C. is about 3.4x107, 20 times the apparent value
determined by Segall and Rice [1995] from analysis of velocity
stepping experiments. Our value derives from data taken after
long hold times (21000 s) when the entire gouge zone was com-
pacting. Our inferred shear strain rate localized to about 1/20 of
the gouge zone width or more precisely the parameter h in
dimensional units is between 17 and 34 um. This compares
with a grain size in shear bands of around 10 pm once the
experiments were well underway. The critical strain g, for
these values is 0.12 and 0.06, respectively. The ratio in (18) of
dilatational strain to shear strain (C./gy) is 0.028 and 0.056,
respectively.

For comparison, the velocity-stepping experiments analyzed
by Segall and Rice [1995] gave apparent values &,,, = 0.005 and
Capp = 1.7x10™. Their ratio of 0.037 is in good agreement
with our theory, which predicts that this ratio is independent of
strain rate localization. It is also in qualitative agreement with
the prediction that these apparent values obtained by velocity
stepping are less than the intrinsic values because of strain
localization.

4. Discussion

We have discussed the implications of a unified theory for
rate and state friction compiled by Sleep [1997]. This straight-
forward extension of rate and state friction to strain rate and
state-dependent friction in a continuum allows strain rate locali-
zation to be studied. It is appropriate to compare its predictions
with data. To do this, we have interpreted laboratory experi-
ments in synthetic gouge by Richardson and Marone [1999].

The experiments of Richardson and Marone, 1999] which we
analyze were not designed to consider strain rate localization.
We can only indirectly study strain rate localization through its
significant predicted effects on macroscopic properties. This
being the case, doubt naturally arises as to whether strain rate
localization is the correct explanation for the observed effects.
Even if such doubts can be dismissed, one needs to know how
well our theory represents observations. We address these
issues in that order.

4.1. An Alternative Explanation to Strain Localization

A salient observation is that the observed displacement for
recovery following holds where 2A >0 and long holds where
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2A =0 was significant larger than the critical displacement
observed for small velocity steps. In our theoretical interpreta-
tion, recovery occurs over a displacement scaling with Wy €y,
where W, is the effective width of the high-strain rate zone
following a hold. Thus any process which delocalizes strain
rate increasing W, to greater than the steady state width Wi,
is predicted to leave a long recovery displacement in its wake.

Alternative explanations for the process causing the long
recovery time (or slip) are possible. M. Nakatani (personal
communication, 1999) suggests consolidation strengthening of
the gouge by vibrations. This phenomenon is well known in
soil mechanics [Lambe and Whitman, 1969]. This familiar pro-
cess explains settling of bulk products like cereal during transit.
Nakatani [1998] attributed strengthening during holds where the
shear traction was relaxed to this process.

We do not believe that consolidation strengthening is the
explanation for the long recovery times observed by Richardson
and Marone [1999]. In soils, consolidation strengthening occurs
when the effective normal traction is essentially zero during part
of the oscillation [Lambe and Whitman, 1969]. This situation
should not have have arisen in the experiments of Richardson
and Marone [1999]. For the nominal conditions of the
2A =11.5 MPa experiments the normal traction remained above
19 MPa compared to the mean value of 25 MPa. In the
2A =5.6 MPa experiments, normal traction nominally remained
above 22 MPa.

In addition, consolidation strengthening in soils occurs when
the initial packing is quite loose. It proceeds by rearrangement
of grains rather than by internal deformation of grains.
Although the porosity of the Richardson and Marone [1999]
synthetic gouge is not precisely known, it is around 10%, which
is far more dense than loose sands and soils with porosities of
over 30%. The comminution of grains in their samples (Figure
1) indicates that deformation involved grain failure.

We note that disruption of strain rate localization might lead
to long recovery times in situations other than slide-hold tests.
For example, Nakatani [1998] reduced the shear traction on
samples during holds and found that long recovery times result.
Sleep [1999a] attributed the effect to variability of the normal
traction on the gouge plane from its macroscopic value. At
patches on low normal traction the movement of the blocks to
reduce macroscopic shear traction locally reversed the sense of
shear traction, causing slip of the opposite sense to the macros-
copic slip. This reverse slip disrupted established shear bands,
causing the sample to be stronger when slip resumed. Another
possibility is that the reduction of shear traction caused unin-
tended increases of normal traction on parts of the gouge con-
tact which (as predicted by (21)) compacted and strengthened
the gouge. These suggestions are plausible as the aftermath of
strain localization was evident in the Nakatani [1998] samples.

In any case, experiments to distinguish the effects of consoli-
dation strengthening from those predicted by our theory are pos-
sible. One possibility would be to vary the frequency of the
normal traction variations (M. Nakatani, personal communica-
tion, 1999) . Consolidation strengthening is expected to be
enhanced by high-frequency vibrations. In contrast, the healing
during holds in our theory depends only on the integral / in
(21) and is essentially independent of the frequency of the oscil-
lations. In fact, the integral I depends mainly on the amount of
time that the gouge is at the highest normal tractions encoun-
tered and is nearly independent of the history around low nor-
mal tractions. Various normal traction paths including ones
where it remains above its previous value during the entire hold
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can be conceived to give the same value of I and hence the
same predicted recovery behavior at the end of the hold.

4.2. Appraisal of Theory Versus Observations

Our theory makes specific predictions about the behavior of
macroscopic compaction and macroscopic shear traction during
slide hold tests. Our one-dimensional formulation of the theory
used in the numerical calculations gives only these macroscopic
averages along with strain rate as a function of the distance x
across the fault zone. This simplifying assumption makes the
calculations tractable and avoids obscuring basic points with
detail at the expense of not representing three-dimensional
aspects of the gouge which are evident in Figure 1.

Unavoidable scatter occurs in the experimental results
because the gouge is a complex substance and its intrinsic pro-
perties vary between tests. Avoidable scatter and systematic
error also occurred because the history of the sample before
each slide-hold test varied. In our numerical models we
represented this history with a single parameter, the preparation
time since strain rate was last delocalized.

We summarize how well our predictions match observations.
The gross trend of compaction versus healing in Figures 5 and 6
is matched by the theoretical curves and the systematic
difference of the 2A =0 data from the other data qualitatively
explained by the longer effective preparation times of those
slide-hold tests. A tolerable fit of healing versus hold time was
obtained for 24 =0 in Figure 7. The 24 =11.5 MPa data in
Figure 7 are quite scattered and detailed inferences from them
are not possible.

The time-dependent behavior of recovery following holds
provides a more stringent test of the theory because all available
material parameters are already constrained by velocity-stepping
tests and by analysis of Figures 5 and 7. In general, the
observed duration of recovery (the time of the curves to
approach zero) is correctly predicted in Figure 8 for
2A =11.5 MPa and in Figure 9 for 24 =0. The observed shape
of the recovery curves is poorly predicted even when elasticity
of the experimental apparatus is included in Figure 10.

We attribute the difference between the observed and theoret-
ical recovery curves to three-dimensional effects in the synthetic
gouge which we did not attempt to represent in the one-
dimensional theory. That is, the strain rate delocalized by
different effective widths W, at different places within the
plane of the gouge and relocalization of strain rate requires slip
to organize into a single shear band. This process is potentially
observable in real time as the local strain rate within the gouge
could be measured while slip is occurring, say by X rays fol-
lowing marker grains. It is also modelable in that the evolution
equation in (30) can be generalized to a convolution in two or
three dimensions. That is, the gouge can be represented as a
continuum fluid surrounded by boundary conditions for the slid-
ing blocks. For the 2 —pm numerical grid used in our models a
huge calculation is implied which we are unable to do. The
finite deformability of the blocks in the apparatus should also be
included. Intrinsic unpredictability is implied by a three-
dimensional instability for strain rate localization within a
heterogeneous gouge.

4.3. Implications of Earthquake Rupture Modeling

One would like to include the results of laboratory experi-
ments on synthetic gouge in models of earthquake dynamics.
To do this, one needs to know how laboratory effects arise and
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whether they represent processes that can occur in the Earth.
Empirical representations of laboratory results court the danger
of including the same effect twice or omitting it altogether. As
normal traction varies with time on real faults planes, it does
not seem wise to have a separate formulation that works only in
the case of constant normal traction. Thus we have analyzed
constant normal traction data with variable normal traction data.

The theory of Sleep [1997] was compiled to be self-consistent
and to have no unmeasurable parameters. It includes a relation-
ship developed to explain transient changes in shear traction
which occur in normal traction stepping experiments [Linker
and Dieterich, 1992], here expressed in (5) and (1). This rela-
tionship has proven to be fairly robust. It can be easily
extended to represent transient changes in friction following
sudden changes in temperature as studied by Chester [1994,
1995] [Sleep, 1997]. It represents the shear failure strength of
intact rock [Sleep, 1999b]. This may be a hint that it has a fun-
damental basis, although we make no claim that it is expressed
in its optimal form.

In contrast, consolidation strengthening currently poses a
problem to modeling the behavior of real faults. For example,
the passage of a seismic wave is expected to strengthen a fault
at rest as compaction is expected in the parts of the wave cycle
when the shear traction and normal traction are reduced. A
theory for this process needs to be formulated as a time-
dependent evolution law to represent these changes.
Alternatively, threshold values of vibration intensity for consoli-
dation strengthening need to be defined. More experiments
where the frequency and intensity of the normal and shear trac-
tion oscillations are varied are needed to do this in addition to
appraising when and if consolidation strengthening occur in syn-
thetic gouge.

The formulation for strain rate localization presented above
may be useful to rupture dynamics. One cannot expect to
model the properties of every part of the fault zone in great
detail. Rather, macroscopic averages are relevant. For exam-
ple, in the case of rupture where brief holds may lead to locking
of a patch of the fault zone, the energy per area of fault zone
needed to restart slip is relevant. Mathematically, this quantity
is

0 = [a-Tds |

where T is the shear traction for steady state sliding and s is
displacement. This quantity is the area under the slip versus
shear traction recovery curves in Figures 8 and 9. It can be
seen that the theoretical curves have approximately the correct
area within a factor of 2 of the observations. This result and
the formulation in general do far better than ignoring strain
localization altogether by using the short critical displacement
obtained from velocity-stepping experiments as the recovery dis-
placement.

(35

5. Conclusions

We have modeled fault gouge has a continuum fluid using
the unified theory rate and state friction complied by Sleep
[1997]. The strain rate within the mathematical gouge localizes
whenever b >a The predicted "critical" displacement to
significantly alter the strength of the gouge depends strongly on
whether strain has localized or not. When the strain rate is
essentially uniform throughout the macroscopic thickness of the
gouge layer Wyom, the displacement is W€, Where &y is the
critical strain an intrinsic material parameter. When the strain
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rate is localized to a steady state width W,,, the displacement is
Wis €. Partial delocalization to a width W, is also possible.
A one-dimensional continuum model of the gouge was formu-
lated to make quantitative predictions of this behavior.

The results of slide-hold tests of Richardson and Marone
[1999] were compared to the predictions of the theory. We
found that the gross effects expected from strain rate localiza-
tion occurred but could be studied only through their conse-
quences on macroscopic variables. The analysis thus could not
be divorced from the theory which predicts the macroscopic
consequences from a continuum model. Firm evidence that
strain rate localization actually occurred within the samples at
the times predicted by the theory is lacking. Consolidation
strengthening during normal traction oscillations is an alternative
which cannot be excluded.

Overall, the theory gives a reasonable representation of the
data. As expected, more healing and compaction of the fault
gouge occurred when the normal traction was increased during
the hold. Recovery times after holds were increased by the
amounts expected from strain rate delocalization during holds.
The one-dimensional theory, however, gave a poor representa-
tion of the shape of shear traction versus displacement curves
during recovery. We attribute this qualitatively to the failure of
the one-dimensional theory to represent the real complicated
gouge.

A need to modify the previous experimental procedure
became evident. The theory indicates that the history of strain
delocalization before a particular slide hold test is important in
determining its outcome. This preparation time since the strain
rate was last delocalized is a simple conceptual way to represent
this history. This quantity had not been previously recognized
as significant in planning experiments. We recommend that the
order of slide-hold tests be arranged so that the preparation time
is kept more regular than was done in the Richardson and
Marone [1999] experiments. As discussed above, the theory
can be further tested as the behavior during holds is predicted to
depend only on the integral of normal traction in (21). It would
be nice but difficult to directly observe strain rate while slip is
in progress.
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